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Abstract

iTasks is a general-purpose framework for developing web applications. It is implemented in the pure
functional programming language Clean. iTasks allows to develop web applications in a task-oriented
manner. The idea is that end-users that develop web applications using iTasks should only have to
specify what tasks should be accomplished using the web application. The iTasks framework takes care
of the technical realization of these tasks.

iTasks uses network I/O to communicate with other programs (e.g: browsers) over a network connection.
IPC (inter-process communication) is used by iTasks to be able to communicate with programs that are
executed on the same computer. This thesis focuses on the network I/O and IPC functionality that is
provided by iTasks. This is a small part of the functionality that is provided by the iTasks framework
as a whole.

More specifically, the network I/O functionality that is provided by iTasks concerns the iTasks HTTP
server. The iTasks HTTP server is used to serve the web applications that are developed using iTasks.
Furthermore, it involves the functionality that iTasks provides to perform network I/O as an end-user.

The IPC functionality of iTasks enables the end-user to execute an external process through an iTasks
program. An external process can be seen as any executable computer program. iTasks provides func-
tionality that allows communicating with the external process that was executed through IPC. Like the
network I/O functionality, the iTasks IPC functionality involves performing I/O as well.

In the existing iTasks implementation, network I/O and IPC are implemented through two separate
concepts. Network I/O is based on the concept of I/O multiplexing. IPC is based on a time-based
polling concept. This architecture has evolved as iTasks was extended over time but is unnecessary.
Having network I/O and IPC be implemented through the same concept makes the iTasks framework
more consistent and easier to maintain.

In addition, the existing iTasks implementation makes use of blocking I/O operations. This is a limitation
because having I/O operations block results in iTasks applications (temporarily) becoming unresponsive.
Furthermore, this limits iTasks applications from being horizontally scaled. Horizontally scaling iTasks
applications is a future goal of the iTasks project. This would allow iTasks to be used in large-scale
projects that require serving a large number of users simultaneously.

As part of this thesis project, the iTasks network I/O and IPC functionality was re-implemented such
that IPC and Network I/O functionality are both provided through the I/O multiplexing concept. This
resulted in a replacement implementation. Providing IPC and network I/O through this concept increases
the maintainability and consistency of the implementation as a whole. The replacement implementation
is inspired by the libuv library. Libuv provides asynchronous I/O and is used by Node.js and various
other projects.

In the replacement implementation, the blocking I/O operations are implemented in a non-blocking
manner instead. As a consequence, iTasks applications do not block when performing I/O. This is
beneficial because iTasks applications can no longer become (temporarily) unresponsive when performing
I/O. Furthermore, this is a necessary step for being able to horizontally scale iTasks servers, which is a
future aim of the iTasks project.

As a result of this thesis, the iTasks network I/O implementation was optimized with the goal of increas-
ing the scalability of iTasks applications. Implementing these optimizations lead to benchmarking the
existing iTasks HTTP server and the replacement HTTP server. The results of this benchmark show
that the replacement HTTP server scales significantly better than existing one.
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Chapter 1

Introduction

Almost every useful computer program makes use of Input/Output (I/O) to some degree. There are
many different forms of I/O. For instance, think of humans interacting with computer programs through
a CLI (command-line interface) or a GUI. In addition, there are forms of I/O that allow computer
programs to interact with other computer programs through I/O. For example, the internet consists
of web servers that provide websites to clients. Communication between clients visiting a website and
the web server responding to their requests happens through network I/O. Visiting a website leads to
the browser establishing a connection to the web server which serves the website. After establishing
the connection, requests and responses may be exchanged. Often, the client will request a web page
that is served by the web server. The web server processes this request and provides the web page as
a response. The response is then interpreted by the browser of the client. This leads to the browser
displaying a web page. The browser and web server are both computer programs that rely on network
I/O to communicate. Programs running on a single computer may also communicate through inter-
process communication (IPC). This form of communication is also based on I/O. In addition, programs
may make use of file I/O to store and access data.

Operating systems provide abstractions which allow to perform these forms of I/O. An example of such
an abstraction is a socket. Sockets are used to abstract from network I/O channels. Computer programs
may use these abstractions and perform operations on them. For example, a computer program may
write to a socket to send data over a network connection. Websites are primarily provided through a
client-server model. When using this model, a socket is created to represent the server. For each client
that connects to the server, a socket is created on the server-side. The server may then interact with the
created socket to communicate with the connected client. Likewise, the client itself obtains a socket as a
result of connecting to the server, this socket may be used to communicate with the server. As a result,
a server may communicate with possibly many clients.

This thesis concerns itself with the way network I/O and IPC (inter-process communication) mechanisms
are provided by iTasks. iTasks is a general-purpose framework for developing web applications. It is
implemented in the functional programming language Clean. iTasks provides a means to write a program
as a composition of tasks and then execute it as web application. Executing such an iTasks program
leads to a web server being started. The web server serves the web application. As a result, clients may
then interact with the web application. This interaction is provided through the client-server model.
The iTasks framework is platform-independent. Concretely, this means that iTasks applications run on
the Windows, macOS and Linux operating systems. iTasks provides a DSL (domain-specific language)
that allows developers to write concise specifications of web applications.
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For any iTasks program, iTasks:

• Sets up a web server which serves the web application that was specified to clients.

• Provides network I/O between clients and the web server to be able to respond to requests made
by clients. For example, such a request may occur when a client requests a web page on the web
server.

• Generates (responsive) forms that allow users to interact with the web application. The content
of the forms that are generated are based on the types that were specified/inferred through the
specification of the web application.

• Checks that the types of the user input provided by the clients are correct and properly notifies
the user if the input is not of the correct type.

It follows that even for simple programs, iTasks takes care of several technical details for the developer.
iTasks tries to remove the need for the developer to think about things that are not related to what the
users should accomplish by using the web application [20].

To summarize, iTasks provides a DSL that allows to develop web applications through concise programs.
In doing so, iTasks minimizes the need for the user to concern themselves with details that are not related
to the task at hand.

From the foregoing it follows that there is an internal implementation that takes care of these details for
the developer. A simplified overview of the internal implementation is included below.

Figure 1.1: Simplified overview of iTasks internal implementation.

The internal implementation of iTasks revolves around an event loop. The event loop is implemented
as a function which recursively calls itself. This function is called loop. As a result, the loop function
is repeatedly evaluated while an iTasks program is being executed. The event loop is used to react to
events. For instance, an event could be that the user clicked the submit button on a web page or entered
a value in an input field. The browser of the user notifies the server of such events using network I/O.
These network I/O events are then processed by the server through the event loop.

As a consequence of iTasks providing a web server on which the generated web pages are hosted, it
internally relies on network I/O. As the above figure shows, processing and retrieving network I/O
events is done within the event loop. Therefore, the event loop plays an important role in providing
network I/O as well. Network I/O is one of the topics this thesis focuses on. Another topic this thesis
focuses on is improving the way IPC (inter-process communication) is provided in iTasks. IPC is used to
provide communication between processes (programs) running on a computer. There are some drawbacks
to the existing IPC implementation of iTasks, which are described in the problem statement. One of
these drawbacks is that IPC events are not being processed and retrieved within the event loop.
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1.1 Problem description

It might not always be possible to perform certain I/O operations. For example, a program may not
read data from a socket if there is no data available. Not knowing whether operations may be performed
or not may result in problems. A web server is often connected to multiple clients. As a consequence,
the server must read from multiple sockets to receive the requests of each connected client. Provided a
single thread is used, it is only possible to receive data from a single socket at a time. At the time of
writing, iTasks is single-threaded.

Consider the possibility of no data being available to read when the server attempts to read from a
socket. A possibility to handle this situation is to block waiting for data to be received on the socket.
In this case, the thread waits until data is received and only then returns from the function call [4]. The
communication with other clients that are connected to the server would be halted while the thread is
waiting on data to arrive. If a web server has to block waiting on operations that may not be performed
this could lead to the web server not being available for requests any longer. It is also possible to receive
data in a non-blocking manner. In this case, an error is returned if there is no data available to read
[4]. This approach causes problems because it is difficult to decide how often the socket should be read.
Reading too often results in many obsolete function calls. Reading infrequently increases the time it
takes for the server to respond to requests.

Various solutions allow avoiding the drawbacks of the approaches mentioned above. During my research
internship, I investigated which solution would be best suited for iTasks and developed a proof of concept
that indicated that the solution could be used for iTasks. The solution is based on I/O multiplexing
mechanisms. The approach taken was inspired by the approach of the libuv library. The libuv library is
used to provide asynchronous I/O in Node.js [10]. The research goal of the thesis and preceding research
internship is to investigate whether the approach that is taken by libuv could fit the existing iTasks
architecture.

iTasks relies on network I/O and also provides IPC (inter-process communication) I/O operations to
end-users. The existing iTasks implementation makes use of an I/O multiplexing mechanism to avoid
the problem described above as well. However, this I/O multiplexing mechanism has some drawbacks.
The concept of I/O multiplexing is introduced below. This is followed by an outline of the drawbacks of
the I/O multiplexing mechanism that is used by the existing implementation.

Operating systems unify the abstractions for Network, IPC and File I/O through file descriptors (Linux,
macOS) and file handles (Windows). This means that for Linux and macOS, sockets, pipes (IPC),
pseudoterminals (IPC) and files can be represented through file descriptors. Similarly, for Windows,
sockets, pipes and files can be converted to the HANDLE type. This is the type representing file handles
within Windows. In this thesis, file handles are referred to as file descriptors for readability. In the
context of this thesis, the difference between a file handle and a file descriptor is not important.

Operating systems provide mechanisms to perform I/O operations without having the program block
in the case that the operation may not be performed. Some of these mechanisms can be categorized
as I/O multiplexing mechanisms. I/O multiplexing mechanisms allow monitoring which I/O operations
are possible on a set of file descriptors (e.g sockets, pipes). In the case of a web server, the sockets
(file descriptors) of the connected clients could be monitored for readability. Using an operation, it
is then possible to retrieve the subset of file descriptors that are readable out of a set of monitored
file descriptors. What to monitor for (readability, writability, exceptions) can be configured for each
individual file descriptor that is monitored.

When the program retrieves that a file descriptor is in a state that it is being monitored for, it may
react by performing an operation that depends on the file descriptor being in this state. In most cases,
the operation will then immediately succeed. This does not happen in all cases, however. For example,
when reading it is not guaranteed that a read succeeds even though the I/O multiplexing mechanism
indicated readability [2] (see "Bugs" section). Similarly, when writing data it is not guaranteed that all
data may be transferred at once. These situations may lead the program to block if the operations are
performed in a blocking manner. Having the program block when performing I/O operations should be
avoided, as it will leave the application unable to respond to other events. Therefore, I/O operations

3



should be performed in a non-blocking manner. This means that if an operation may not immediately
be performed, the operation will immediately return a specific error that can be handled.

iTasks currently makes use of the select I/O multiplexing mechanism to monitor sockets. The select
I/O multiplexing mechanism is a portable mechanism. It is implemented on Windows, Linux and macOS.
However, select does not scale well. select was introduced to (BSD) Unix in 1983 [19] and has a long
history of use. Retrieving the subset of file descriptors of a set of file descriptors on which operations may
be performed has an O(n) time complexity, with n being the number of file descriptors being monitored
[1]. Furthermore, monitoring over 1023 file descriptors at once using select should not be attempted
on Linux [2] (see "Bugs" section). The select I/O multiplexing mechanism is therefore limited in terms
of scalability.

There are more recent I/O multiplexing mechanisms that can retrieve such a subset with a O(1) time
complexity [1]. As a result, using such I/O multiplexing mechanisms can improve the performance of
iTasks applications that perform I/O operations as the number of sockets being monitored increases.
In addition, these I/O multiplexing mechanisms can easily monitor larger numbers of file descriptors
and do not have a practical limit on the number of file descriptors that can be monitored. The best
performing I/O multiplexing mechanisms are epoll (Linux), kqueue (macOS) and IOCP (Windows)
[5]. However, the performance advantage of these mechanisms only becomes significant as thousands
or more file descriptors are monitored [9]. The scalability advantage provided by the replacement I/O
multiplexing mechanisms is worth mentioning but it is not the main goal of the thesis.

The Windows IPC implementation does not use an I/O multiplexing mechanism for IPC as select does
not allow to monitor pipes on Windows [3]. As a result, IPC and network I/O are provided through
conceptually different implementations. However, pipes may be monitored on Windows through the
IOCP I/O multiplexing mechanism. Using IOCP allows to monitor for IPC through the event loop as well.
This allows to provide IPC and network I/O through a conceptually equivalent model. This simplifies
the iTasks implementation and makes it more consistent. In addition, the Windows IPC implementation
is improved as the named pipes may be monitored through an I/O multiplexing mechanism. This allows
to perform the operations using the indications that are provided by the I/O multiplexing mechanism.
As a result, a goal of the thesis is to replace the select I/O multiplexing mechanism for the IOCP I/O
multiplexing mechanism on Windows.

Currently, the internal implementation may retrieve and process I/O events in several locations within
the internal implementation. In this thesis we aim to unify all retrieval and processing of events in a
single location. This increases the maintainability of the implementation. To accomplish this, it must
be possible to monitor IPC and network I/O using the same approach. This is made possible by using
IOCP on Windows.

Another reason for retrieving and processing I/O events in multiple locations is that several operations
within the existing implementation may block. Providing operations in a blocking manner results in
a simpler implementation compared to providing them in a non-blocking manner. This is a result of
blocking operations guaranteeing that the operation succeeded before the program continues execution.
In the case of using completely non-blocking operations, operations may have to be delayed to a later
point in time, which complicates matters. However, performing operations in a blocking manner has the
drawback of making it possible for the program to block. This leaves the iTasks program (temporarily)
unresponsive to other events.

To give an example, sending and receiving network I/O data may block in the existing implementation.
When sending or receiving data, initially a non-blocking operation is used. However, the non-blocking
operation may fail. In this case, the existing implementation uses the select I/O multiplexing mecha-
nism to wait for the file descriptor to be in the required state. Instead of providing a set of file descriptors,
a single file descriptor is provided. select is used as a blocking call. As a result, it only returns once
the socket being monitored is in the required state. Therefore, sending and receiving data in the existing
implementation may block. Certain other operations like connect (network I/O) are performed in a
blocking manner as well. A goal of the thesis is to provide all operations in a non-blocking manner.
This paves the way to have a non-blocking event loop. This is useful because iTasks depends on hav-
ing the event loop being regularly evaluated. If the event loop blocks, iTasks is unable to respond to
events. Using non-blocking operations ensures the iTasks event loop does not block when performing
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network I/O/IPC operations. In addition, implementing I/O operations in a non-blocking manner makes
it possible to retrieve I/O events within a single location instead of several locations.

Furthermore, providing I/O operations in a non-blocking manner is a necessary step for horizontally
scaling iTasks applications. A future aim of the iTasks project is to make it possible to serve iTasks
applications in a distributed manner. This would enable iTasks applications to use all the threads of
the CPU of the computer which provides the iTasks application. In addition, this would allow traffic to
iTasks applications to be distributed over multiple servers. Horizontal scaling is beneficial as it allows
iTasks to be used for developing web applications that require serving large numbers of simultaneous
users.

As stated, a goal of the thesis is to replace the select I/O multiplexing mechanism for the IOCP I/O
multiplexing mechanism. There are significant differences between the IOCP and select I/O multiplex-
ing mechanisms and how they are used. As a consequence, select is replaced by kqueue on macOS and
epoll on Linux. The reasoning for this replacement is that epoll and kqueue are very similar I/O mul-
tiplexing mechanisms and they differ less from IOCP than select does. Furthermore, these mechanisms
are not limited in terms of scalability. As stated, select has the limitation of not being able to monitor
over 1023 file descriptors.

The drawback of using the kqueue, epoll and IOCP I/O multiplexing mechanisms is that the mechanisms
are operating system specific. kqueue and epoll are more similar to IOCP than select. Nonetheless,
significant differences remain between the IOCP and epoll I/O multiplexers. Despite these differences, the
network I/O/IPC abstractions that are provided to the end-users should be platform-independent. This
is required because iTasks is a platform-independent framework. Accomplishing this requires providing
abstractions to the end-users that abstract away from the differences within the internal implementation.

To summarize, this thesis focuses on implementing network I/O/IPC through epoll (Linux), kqueue
(macOS) and IOCP (Windows) in iTasks. The select I/O multiplexing mechanism that is currently
being used is replaced. Replacing select for epoll, kqueue and IOCP is beneficial because it allows to
monitor IPC file descriptors on Windows. This enables IPC and network I/O to be provided through a
conceptually equivalent approach. Furthermore, the thesis focuses on unifying the retrieval of I/O events
in a single location instead of several locations throughout the code. This increases the maintainability
of the implementation. In addition, a goal of the thesis is to provide network I/O and IPC solely through
non-blocking operations. This is useful because this makes sure iTasks remains able to respond to events.
In addition, implementing I/O operations in a non-blocking manner is required for horizontally scaling
iTasks applications. This is a future goal of the iTasks project.
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1.2 Document structure

• Chapter 1 contains the introduction, problem statement and document structure.

• The existing implementation is introduced in chapter 2.

• Chapter 3 contains an introduction of the replacement implementation. The replacement imple-
mentation replaces the existing implementation.

• The implementation of the existing HTTP server is discussed in chapter 4.

• The implementation of the HTTP server in the replacement implementation is described in chapter
5.

• Chapter 6 provides an overview of how network I/O functionality aimed at end-users is provided
in the existing implementation.

• Chapter 7 examines the internal implementation of network I/O for the replacement implementa-
tion.

• The implementation of IPC (inter-process communication) functionality within the existing imple-
mentation is described in chapter 8.

• The internal implementation of IPC within the replacement implementation is discussed in chapter
9.

• Chapter 10 describes the process of benchmarking the iTasks HTTP server and the obtained results.
For the benchmark, the existing HTTP server implementation was compared to the replacement
implementation in terms of performance and scalability.

• Chapter 11 contains the conclusion of the thesis.

• Chapter 12 provides suggestions for future work that is related to this thesis.
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Chapter 2

Existing Implementation - Introduction

iTasks is a general-purpose framework for developing web applications. iTasks is implemented in the
pure functional programming language Clean. A part of the implementation of iTasks provides network
I/O and IPC functionality. This part of the iTasks implementation is used by iTasks to communicate
with external programs, possibly over a network connection. The focus of this thesis is on this part of the
iTasks implementation. Hereafter, this part of the iTasks implementation is referred to as the existing
implementation.

This chapter introduces the network I/O and IPC functionality that is provided by iTasks. Furthermore,
this chapter introduces the internals of the existing implementation. This is done with the goal of
providing a general idea of how the existing implementation provides Network I/O and IPC functionality.
Furthermore, the main drawbacks of the existing implementation are identified. To provide solutions for
these drawbacks, the network I/O and IPC implementation was revisited. This resulted in a replacement
implementation. The replacement implementation is introduced in the subsequent chapter.

2.1 Network I/O

iTasks provides Network I/O functionality, which naturally is concerned with providing I/O communi-
cation over a network. iTasks provides a built-in HTTP server that is used to serve the web applications
that are developed using iTasks. The HTTP server relies on network I/O to communicate with the
clients that are connected to the HTTP server. Usually, the clients are browsers that are used by people
that interact with the iTasks web application.

As an example of how network I/O may be used by iTasks, consider the following simple iTasks program:

module example

import iTasks

Start w = doTasks addTwoNumbers w

: : IntPa ir = { f i r s t I n t e g e r : : Int , secondInteger : : Int}
derive class iTask IntPa ir

addTwoNumbers : : Task Int
addTwoNumbers =

T i t l e "Enter two integers" @>>
enterIn format ion [ ] >>∗

[ OnAction
(Action "View the sum" )
(

hasValue \{ IntPa ir | f i r s t I n t e g e r , secondInteger} ->
viewInformation [ ] ( f i r s t I n t e g e r + secondInteger )
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<<@ T i t l e "The sum of the numbers is : "
)

]

The program included above allows the user to enter two numbers, confirm their choice and then displays
the sum of the numbers on the screen. Even though the program is rather concise, iTasks generates a
complete web application that is used to serve the program. When the program is executed, iTasks starts
a web server that allows clients to perform the specified workflow. This program provides a (responsive)
form to the end-user. In this form, the end user may input two integers and press a button to submit
the input. This is followed by the sum of the numbers being displayed to the end-user.

(a) Entering two integers (b) Viewing the sum

Figure 2.1: The generated user workflow.

Network I/O is used to notify the server of the numbers that were entered by the user and the fact
that the user submitted the form. Furthermore, network I/O is used to retrieve the web page that is
shown to the user. The server makes use of sockets as a communication channel for interacting with the
connected clients. The existing HTTP server relies on the select I/O multiplexing mechanism. The
HTTP server makes use of select to detect connection requests made by clients. In addition, select is
used to react to user input, such as submitting the form in the above example. The role of the select
I/O multiplexing mechanism is described in more detail in section 2.3

2.2 IPC

The IPC functionality provided by iTasks involves being able to execute an external process as an end-
user from an iTasks program. An external process can be seen as any executable computer program.
iTasks provides a means to communicate with the external process that was executed. This makes it
possible to provide input to the external process and read the output of the external process.

As an example, consider the following program, which will be executed as an external process.

#i n c lude <s td i o .h>

// addtwonumbers . c : Reads two numbers as input and p r i n t s the sum as output
.

i n t main ( ) {
i n t a , b ;
s can f ( "%d" , &a ) ;
s can f ( "%d" , &b) ;
p r i n t f ( "%d\n" , a + b) ;
re turn 0 ;

}
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The program included below executes the C program specified above and provides two integers (2 and
3) as input to the external process. It reads the sum of the integers that is written as output by the
external process once the external process terminates. The sum of the numbers provided as input is then
displayed to the user. This happens because the external process writes the sum as output.

module proces s

import iTasks
import System .Time

Start w = doTasks proces s w

proces s : : Task [ Str ing ]
proces s = withShared [ "2\n3\n" ] \ inputStorage ->

withShared ( [ ] , [ ] ) \ outputStorage ->
externa lProce s s {Timespec | tv_sec=1 , tv_nsec=0}

"/path/to/addtwonumbers . exe" [ ] ?None 0
?None inputStorage outputStorage

>- | get outputStorage >>~ \( output , errorOutput ) ->
viewInformat ion [ ] output

The communication between the iTasks program and the external process is made possible by using pipes
or a pseudoterminal. Pipes and ptys (pseudoterminals) are abstractions which are used to represent an
inter-process I/O channel. The iTasks program reads from a pipe/pty to receive the output of the external
process. Similarly, the iTasks program writes to a pipe/pty to send input to the external process. The
developer can store input that should be written to the external process in a SDS (Shared Data Source).
Likewise, the output of the external process is stored in a SDS as well. A SDS is used to read and write
shared data.

The existing iTasks IPC functionality does not rely on the select I/O multiplexing mechanism. The
reason for this is that the Windows implementation of select does not allow to monitor pipes (IPC)
[3]. Instead iTasks uses a time-based non-blocking approach to monitoring the pipes that are involved in
communication. This means that iTasks will attempt to read from the pipe/pty periodically to read the
output of the external process. This is done regardless of whether there is data available to read or not.

2.3 Internal implementation

The existing network I/O implementation relies on the select I/O multiplexing mechanism. I/O mul-
tiplexing mechanisms such as select provide a means to monitor a set of file descriptors.

Operating systems provide abstractions which represent network I/O and IPC communication channels.
In the case of network I/O, such an abstraction is a socket. For example, a program may write data to
a socket to send data over a network connection. In the case of IPC, examples of such abstractions are
pipes and pseudoterminals (ptys). A side note is that using a pseudoterminal for IPC is not supported
on Windows.

Pipes, sockets and pseudoterminals are all file descriptors. Therefore; pipes, sockets and pseudoterminals
may be monitored by the select I/O multiplexing mechanism. There is an exception, the Windows
select implementation does not allow to monitor pipes. This drawback is described in more detail in
section 2.3.3.

I/O multiplexing mechanisms allow to retrieve which file descriptors out of a monitored set of file de-
scriptors are in a specific state (e.g: readable, writable). A file descriptor being in a state may indicate
that a certain I/O operation may be performed. For example, a socket being readable implies that a
connection request may be accepted when monitoring a socket that is configured to listen for connections.
The existing HTTP server relies on the select I/O multiplexing mechanism to be able to react to the
activity of clients that interact with the HTTP server.
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There is more to the existing implementation than just the select I/O multiplexing mechanism itself.
The I/O multiplexing mechanism will not start monitoring the file descriptors involved in I/O by itself,
for instance. The I/O multiplexing mechanism plays a small yet vital role within the implementation as
a whole. This is shown by the overview that is included below.

Figure 2.2: Abstract overview of the existing implementation.

The above overview illustrates the general idea of how network I/O and IPC is provided by iTasks in
the existing implementation. In addition, the overview accentuates the main drawbacks of the existing
implementation.

2.3.1 iTasks/Clean

As the above overview shows, a part of the implementation is implemented in Clean/iTasks. The iTasks
HTTP server relies on network I/O. tcplisten, tcpconnect are the tasks which are used to perform
network I/O as an end-user. Likewise, externalProcess is the task that is used to execute an external
process as an end-user. The externalProcess task is then able to communicate with this external
process using IPC (inter-process communication). The internal implementation of these tasks and the
HTTP server ensure that the file descriptors (sockets, pipes, ptys) that are involved in communication
are monitored.

As stated, pipes and pseudoterminals (ptys) are abstractions that are used to represent an inter-process
communication channel. Pipes and pseudoterminals allow to send data to the stdin of an external
process and receive the output that was written to the stdout or stderr of an external process. An
external process can be seen as any kind of executable computer program. stdin is the standard input
channel of programs. For example, when a user executes a program in a terminal and then provides user
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input to the terminal, this input is written to stdin by default. Similarly, stdout is the standard output
channel of a program. For example, a program prints data, this data is written to stdout by default.
stderr follows the same approach as stdout, however it is used for error data instead. It is possible to
communicate with an external process by interacting with the stdin and stdout/stderr of the external
process. This is accomplished by redirecting the stdin/stdout/stderr of the process to pipes/a pty. The
pipes/pty are then interacted with.

A socket is an abstraction that is used to represent a network I/O communication channel. Sockets allow
to communicate with a peer over a network connection. This involves establishing a connection to the
peer, which is done making use of sockets as well. In the case of the iTasks HTTP server, sockets are
used for communication between clients and the HTTP server. For example, when a browser is used to
access a web page served by an iTasks HTTP server, the browser establishes a socket connection to the
HTTP server. The browser then uses the socket connection to communicate with the HTTP server.

In the existing implementation, a different approach is used to monitor the file descriptors involved in
I/O depending on whether IPC or network I/O functionality is used. This is illustrated by the overview.

In the case of using network I/O, the sockets that are involved in I/O communication are monitored
using the select I/O multiplexing mechanism. This allows to monitor the sockets for being in a certain
state (e.g readable, writable). When a socket is in the state that it is being monitored for, an event
is returned. The internal implementation of network I/O processes the events that the select I/O
multiplexing mechanism returns. For example, if a socket is monitored for readability and the socket
is readable once events are retrieved, select returns an event for this socket. This event is processed
using Clean/iTasks. In the case of the socket being a listening socket, a readability event indicates that
a connection request is available. This event is processed by performing an accept operation, which is
used to accept the connection request. In the case of the socket being a client socket, a readability event
indicates that data is available to be read. In this case, the read operation used to read the data that
is available to be read and process this data. To perform network I/O operations, monitor sockets and
interact with the select I/O multiplexing mechanism, the iTasks/Clean implementation depends on a
C interface. The C interface is described in section 2.3.2.

In the case of using externalProcess (IPC), a time-based approach is used for monitoring the file de-
scriptors due to limitations of the select I/O multiplexing mechanism on Windows. This is a drawback
of the existing implementation, which is described in more detail in section 2.3.3. The end-user can
provide a time interval to the externalProcess task and as a result, the pipes/pty involved in commu-
nicating with the external process are read periodically. That means that every given time period, the
implementation will attempt to read from the pipes/pty in a non-blocking manner. On Windows this is
done regardless of whether there is data available or not. By reading the pipes/pty, the output of the
external process may be processed. The IPC implementation makes use of system calls to be able to
perform I/O operations on pipes and pseudoterminals. To be able to perform these system calls, the
IPC implementation relies on the Clean foreign function interface. The Clean foreign function interface
is described in section 2.3.4.

2.3.2 C interface

As the overview that is included above illustrates, the iTasks/Clean implementation depends on a C
interface. The C interface – that can be seen as a set of C functions that are called by Clean – provides
interaction with the select I/O multiplexing mechanism. As stated, the select I/O multiplexing
mechanism is used to retrieve which file descriptors out of the monitored set of file descriptors are in
a specific state (e.g: readable, writable). In addition, the C interface provides functions which perform
I/O operations (e.g send, connect and accept). Clean is able to call the C functions in the C interface
through the Clean foreign function interface, which is described in section 2.3.4.

2.3.3 General improvements

The Windows implementation of the select I/O multiplexing mechanism has the limitation of not
being able to monitor pipes [3]. A pipe is an abstraction that is used to represent an inter-process
communication channel. The processing of network I/O events relies on the select I/O multiplexing
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mechanism. However, pipes may not be monitored using the select I/O multiplexing mechanism on
the Windows platform. As a result, processing I/O events for IPC and network I/O could not be done
using the same approach when using select.

This means that the internal implementation of IPC takes a different approach to performing I/O op-
erations. As stated, IPC I/O is performed periodically based on a time interval that is specified by the
end-user. This means that the pipes involved in IPC are periodically read in a non-blocking manner in
an attempt to receive data. This is done regardless of whether data is actually available or not. Similarly,
the implementation periodically checks whether there is data to be sent to the external process. If there
is data available to be sent, the data is sent to the external process.

This time-based approach is less optimal than performing I/O operations using a indication the the
operation may actually be performed. Such indications are provided by I/O multiplexing mechanisms.
Moreover, this approach leads to performing I/O operations according to two different concepts. However,
both pipes and sockets may be monitored on Windows using the IOCP I/O multiplexing mechanism. If
the IOCP multiplexing mechanism were to be used instead, I/O events for both IPC and network I/O
could be processed using the same approach. Furthermore, monitoring pipes could be done using an I/O
multiplexing mechanism instead of the current time-based approach. As a result, a goal of the thesis is to
unify the approaches for providing IPC and network I/O through a single concept instead. This requires
replacing the select I/O multiplexing mechanism for the IOCP multiplexing mechanism on Windows.

In addition, I/O operations may be performed in a blocking manner in the existing implementation.
This is illustrated by the overview included above (figure 2.2). For example, data is sent in a blocking
manner for both the IPC and network I/O implementations. The problem with performing operations
in a blocking manner is that the iTasks program may block when performing I/O. When the iTasks
server blocks, it may not perform other operations or respond to events. Therefore, performing I/O in
a blocking manner should be avoided. As a consequence, performing all I/O in a non-blocking manner
is a general goal when replacing the existing implementation. This is also required for serving iTasks
applications in a distributed manner. Doing so is a future aim of the iTasks project as this is required
for using iTasks for large-scale applications that require serving a large number of users simultaneously.

2.3.4 Clean foreign function interface

Clean provides a foreign function interface (FFI) which may be used to perform system calls and evaluate
C functions in Clean [6]. The FFI allows to pass Clean values to C functions or system calls and to pass
return values back to Clean. The Clean foreign function interface is used to:

• Perform pipe I/O operations.

• Perform network I/O operations.

• Interact with the I/O multiplexing mechanism.

The types of the values that may be used are restricted. The following table gives an overview of:

• The types that may be used.

• How the Clean and C types that may be used correspond.

• How the types are represented in the type string that must be provided when calling the C function
through Clean.

The type string that has to be provided is described in more detail further on in this section.
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Clean type C type Typestring character
Int int I
Char char I
Bool int I
Real double R
String CleanString S
{#Char} CleanCharArray A
{#Int} CleanIntArray A
{#Real} CleanRealArray A
Int anytype* P

The CleanString, CleanCharArray, CleanIntArray and CleanRealArray C types are provided through
the Clean.h header file. The operations that may be performed on values of these types are described in
more detail in [6]. Any pointer within C may be represented within Clean as an Int. A simple example
of the use of the Clean FFI is included below:

// C func t i on acce s s ing / updat ing g l o b a l v a r i a b l e .
int g l oba l = 3 ;

int divGlobal ( int n , int∗ e r r ) {
g l oba l - - ;

// Div i s i on by 0 .
i f ( g l oba l == 0) {

∗ e r r = - 1 ;
return 0 ;

}
∗ e r r = 0 ;
return n / g l oba l ;

}

// Corresponding Clean func t i on .
: : Err :== Int
d ivGlobal : : ! Int ! ∗World -> ( ! ( ! Int , ! Err ) , ! ∗World )
divGlobal x s t a t e = code {

c c a l l addGlobal "I : II : A"
}

A strict unique state (!*World) is required to be passed to the Clean functions that use the foreign
function interface. This is required since the order of evaluation of C functions should be specified [7]
[6]. This is necessary because evaluating C functions may lead to side effects occurring [6].

Not passing on the strict unique World state results in problems determining the order of evaluation
because Clean has a lazy evaluation strategy by default. This means that, by default, the Clean compiler
delays evaluating expressions until the result of the expression is needed. The order of evaluation is
therefore not usually defined. If the functions that are used are pure and thus do not produce any
side effects, this does not result in problems. However, when the functions used are impure, like the
divGlobal function, problems arise. It should not be possible to be able to specify a program such as:

i n c o r r e c t : : [ Int ]
i n c o r r e c t = [ x , y ]

where
(x , e r r ) = divGlobal 2
(y , e r r ) = divGlobal 3

// No unique World s t a t e passed through d i vG loba l .
: : Err :== Int
d ivGlobal : : ! Int -> ( ! Int , ! Err )
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Since the compiler has a lazy evaluation strategy by default, it would not be defined whether divGlobal
2 or divGlobal 3 should be evaluated first. Since the divGlobal function results in side effects (e.g: it
updates a global variable), this could have very undesirable consequences. Luckily, the compiler is able
to determine the order of evaluation through the unique state [7]. Requiring this state to be passed on
enforces the order of evaluation to be specified thanks to the uniqueness type system. If a value of a
certain type is unique, there can be at most one reference to the value while it is being inspected by a
function [8]. Hence specifying a program like

: : Err :== Int
i n c o r r e c t : : ∗World -> [ ( ( Int ,Err ) , ∗World ) ]
i n c o r r e c t world = [ divGlobal 2 world , divGlobal 3 world ]

divGlobal : : ! Int ! ∗World -> ( ! ( ! Int , ! Err ) , ! ∗World )

leads to an uniqueness type error as the world has two references to it while it is being inspected by the
divGlobal function. This uniqueness error can be prevented by specifying an order of evaluation like so:

: : Err :== Int
co r r e c t : : ∗World -> ( [ ( Int , Err ) ] , ∗World )
co r r e c t world0

# ( r0 , world1 ) = divGlobal 2 world0
# ( r1 , world2 ) = divGlobal 3 world1
= ( [ r0 , r1 ] , world2 )

divGlobal : : ! Int ! ∗World -> ( ! ( ! Int , ! Err ) , ! ∗World )

Because divGlobal 3 world1 needs world1 to be evaluated, the compiler will evaluate divGlobal 2
world0 first. There is at most one reference to the world at all times so there are no uniqueness type
errors in this case.

It is not necessary to give the world variables a different name (world0, world1, ...) but this was done
to make the state updates more explicit. A program that is equivalent up to renaming of variables is
shown below:

: : Err :== Int
co r r e c t : : ∗World -> ( [ ( Int , Err ) ] , ∗World )
co r r e c t world

# ( r0 , world ) = divGlobal 2 world
# ( r1 , world ) = divGlobal 3 world
= ( [ r0 , r1 ] , world )

divGlobal : : ! Int ! ∗World -> ( ! ( ! Int , ! Err ) , ! ∗World )

It should be noted that the iTasks developer only has access to a single unique World state. As a
consequence, it is not possible to avoid specifying the order of evaluation by using two or more different
unique World states.

In addition, all of the types that are contained within the function type of the Clean function which
performs the ccall have a strictness annotation (!). This makes sure the values that are provided are
strictly evaluated. As a result, the values are reduced before they are passed to the C function, which is
required [6]. Similarly, return values from C functions have a strictness annotation as well.

C functions and system calls are evaluated in Clean using the ccall instruction. ccall takes a system
call or C function as an argument alongside a typestring.

ccall divGlobal "I:II:A" evaluates the divGlobal C function. The first characters in the provided type
string are the types of the arguments provided to the C functions from Clean. In this case it is a single
integer argument, hence the type string starts with I: (see the type conversion overview included above).
The state is not provided to the C function itself. Therefore, it is not part of the first characters in the
typestring.
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The characters after the first colon separator indicate the types of the return values of the C function. In
this case, the C function itself returns an int and the int* err is used to return an extra int to Clean.
Therefore, this part of the typestring contains II. The characters after the second colon separator of
the typestring are used to return values which are not returned or used by the C function that is called.
Usually this part of the typestring indicates the type of the unique state as it is not used by the C
function. World is an Array type so this part of the typestring contains A. The types of the return values
are put in left-to-right order. The type for the return value of the function itself is always the first
character of this part of the typestring. Consider the following example:

The type string "I:IIIS:A" indicates that the C function could have the following form:

int f ( int cleanValue , int∗ extraRet0 , int∗ extraRet1 , CleanStr ing ∗
extraRet2 )

{
// Assign to re turn va l u e s .
∗ extraRet0 = 2 ;
. . .
return 0 ;

}

A corresponding Clean function could be:

: : CleanValue :== Int
: : ReturnValue :== Int
: : ExtraRet0 :== Int
: : ExtraRet1 :== Int
: : ExtraRet2 :== Str ing
f : : !CleanValue ! ∗World ->

( !ReturnValue , ! ExtraRet0 , ! ExtraRet1 , ! ExtraRet2 , ! ∗World )
f = code {

c c a l l f "I : IIIS : A"
}

Something to be aware of is that using the FFI may be unsafe. For example, the Clean type system
may be broken through the FFI. The C function above could be made to return a double instead of an
int. If the typestring added to the ccall and the return type of the Clean were not adjusted, Clean
would still be expecting an int and this would not lead to problems at compile-time. This could lead to
problems at run-time, however. Moreover, functions that use the FFI may be impure, as is the case for
the example included above. A requirement for a function being pure is that the function, when provided
the same arguments, always produces the same output. The output of the C function above depends on
a global variable which is being updated as a side effect of calling the function. As a result, the example
function above does not always produce the same output when provided the same input argument. The
function is thus impure.

2.4 Summary

iTasks provides network I/O and IPC functionality to end-users and relies on an HTTP server for serv-
ing web applications that are developed using iTasks. This thesis focuses on revisiting the internal
implementations of network I/O and IPC functionality with the intent of improving on the existing im-
plementation. In the existing implementation, the end-user makes use of the tcpconnect and tcplisten
tasks to perform network I/O. The HTTP server relies on network I/O as well. The externalProcess
task is used to execute an external process and allows to communicate with this external process through
IPC (inter-process communication).

Evaluating these tasks or making use of the HTTP server results in file descriptors (e.g: sockets, pipes)
being monitored for being able to perform I/O operations. This monitoring may lead to performing I/O
operations on the file descriptor, such as accepting a connection. The existing implementation depends
on the Clean foreign function interface, the foreign function interface is used to call C functions and
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system calls which are used to perform I/O operations and interact with the select I/O multiplexing
mechanism.

File descriptors involved in IPC are monitored using a different approach than file descriptors involved
in network I/O. The thesis aims at replacing the select I/O multiplexing mechanism for the IOCP
multiplexing mechanism on Windows. This makes it possible to monitor IPC and network I/O using
the same approach, which simplifies the implementation. In addition, this allows to unify the retrieval
and processing of I/O events in a single location instead of several locations throughout the code. Fur-
thermore, the existing implementation performs several I/O operations in a blocking manner. A goal
for the replacement implementation is to implement all I/O operations in a non-blocking manner. As
a result, the iTasks server will never block when performing I/O operations. This is beneficial because
this ensures the iTasks implementation is always able to respond to events in a timely manner. In ad-
dition, performing I/O operations in a non-blocking manner is required for horizontally scaling iTasks
applications. This is a future goal of the iTasks project. Being able to serve an iTasks application using
multiple servers would make it possible to use iTasks for large-scale applications that require serving
large numbers of users simultaneously.
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Chapter 3

Replacement Implementation - Introduction

This thesis focuses on revisiting the existing iTasks network I/O and IPC implementation. The exist-
ing network I/O and IPC implementation have been introduced in the preceding chapter. The existing
implementation depends on the select I/O multiplexing mechanism. Revisiting the existing implemen-
tation lead to a replacement implementation, which is introduced in this chapter. In the replacement
implementation, select is being replaced for the IOCP (Windows), kqueue (macOS) and epoll (Linux)
I/O multiplexing mechanisms. This is done to be able to provide IPC and network I/O through a single
approach instead of two separate approaches. Providing network I/O and IPC through a single approach
simplifies the implementation and makes it more consistent. On Linux and macOS, kqueue and epoll
are used because these mechanisms are more similar to IOCP than select. Furthermore, like IOCP,
kqueue and epoll are not limited in terms of scalability. The select I/O multiplexing that is used by
the existing implementation may monitor at most 1023 file descriptors at once on the Linux platform [2]
(see "Bugs" section).

This chapter introduces how network I/O and IPC is provided in the replacement implementation. The
replacement implementation provides solutions to the drawbacks of the existing implementation. The
drawbacks of the existing implementation are described in section 2.3.3. IOCP takes a significantly
different approach to I/O multiplexing compared to the other I/O multiplexing mechanisms. In this
chapter, the approach of IOCP is introduced and compared to the approach of kqueue, epoll and
select. As the replacement implementation provides operations in a non-blocking manner, data is sent
in a non-blocking manner as well. The existing implementation sends data in a blocking manner. This
chapter describes the process of sending data in a non-blocking manner as it applies to both network
I/O and IPC.

The overview included below provides an abstract overview of how the replacement implementation
provides Network I/O and IPC. It is similar to the overview of the existing implementation (figure 2.2)
and illustrates the main changes to the implementation.
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Figure 3.1: Abstract overview of the replacement implementation.

The replacement implementation makes use of the same approach when monitoring network I/O and IPC
unlike the existing implementation. To achieve this, select was replaced for the IOCPmultiplexing mech-
anism on Windows. The replacement implementation internally makes use of the IOCP/kqueue/epoll
I/O multiplexing mechanisms. Which mechanism is used depends on the target platform of the iTasks
application. IOCP is used on Windows, kqueue is used on macOS and epoll is used on Linux.

Like the existing implementation, the replacement implementation consists of a Clean/iTasks implemen-
tation and a C interface. The iTasks/Clean implementation depends on the C interface for interacting
with the I/O multiplexing mechanism and performing I/O operations. In the replacement implemen-
tation, all I/O operations are provided in a non-blocking manner, unlike the existing implementation.
The events returned by the I/O multiplexer are processed through Clean/iTasks. Processing IPC and
network I/O events is done using the same approach.

The tcplisten and tcpconnect tasks are used to provide network I/O to end-users. The type of tc-
plisten and tcpconnect remained the same as the type that is defined for the existing implementation.
The replacement implementation makes it possible to execute an external process and communicate with
the external process. This is done using the externalProcess and externalProcessHandlers tasks.
The externalProcessHandlers task is new and is described in chapter 9. The externalProcess task
has the same type as the externalProcess task featured in the existing implementation. The network
I/O/IPC tasks and the HTTP server make use of the replacement I/O multiplexing mechanisms and
perform operations in a non-blocking manner. Since the externalProcess, tcplisten and tcpconnect
tasks are still of the same type, old programs using these tasks do not have to be altered.

3.1 C interface

Like the existing implementation, the replacement implementation depends on a C interface. The C
interface can be seen as a set of C functions that may be evaluated through Clean. In this case, the
functions within the C interface provide interaction with the I/O multiplexing mechanism. In addition,
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functions within the C interface are used to perform operations on I/O abstractions (e.g sockets, pipes).
The I/O multiplexing mechanism and operations that are used differ depending on the target platform.
Hence, the functions within the C interface may have different implementations as well, depending on
the target platform. It is possible to evaluate functions within the C interface using the Clean Foreign
Function Interface (FFI), which is described in section 2.3.4. The functions in the C interface have the
same types on all platforms. The replacement I/O multiplexing mechanisms are similar enough to have
a single iTasks/Clean implementation for all supported platforms.

3.2 Proactive and reactive I/O multiplexing mechanisms

An important goal of the thesis is to provide network I/O and IPC through a single approach instead
of two separate approaches like the existing implementation. To realise this goal, the select I/O mul-
tiplexing mechanism was replaced for the IOCP (Windows), kqueue (macOS) and epoll (Linux) I/O
multiplexing mechanisms. These mechanisms all have a distinct API. Consequently, the implementation
of network I/O and IPC has a distinct internal implementation for each operating system. Nonethe-
less, the functionality that the implementation provides is exposed to the end-user through platform-
independent abstractions. For example, the tcplisten task will behave the same regardless of which
operating system is used.

Even though the select, kqueue and epoll mechanisms make use of a different API they use the same
concept for handling I/O events. However, IOCP (Windows) takes a different approach.

The difference between the two approaches can generally be summarized by stating that for IOCP,
an event being returned means that something has happened. For kqueue and epoll, an event being
returned means that something may happen at the moment in time that the event was returned. In
the context of a connection request, that means that returning a connection event for IOCP means that
the connection request has been accepted. For epoll, kqueue and select it provides an indication
(not a guarantee) that a connection request may successfully be accepted. IOCP takes a proactive
approach and operations are generally performed in an asynchronous manner. epoll, select and kqueue
take a reactive approach and generally use synchronous operations. Operations that are performed on
Windows (IOCP) may also end up completing synchronously. Furthermore the connect operation, which
is used by the reactive I/O multiplexing mechanisms may be performed in an asynchronous manner.
Unifying both the proactive and reactive approaches through a single platform-independent abstraction
resulted in challenges. These challenges were related to abstracting away from the differences between
the proactive and reactive approach within the internal implementation. The differences between the
proactive and reactive approach is the root cause of most of the platform-specific differences within the
internal implementation. Several of the I/O events returned to Clean have to be processed differently
depending on whether IOCP is used or not, for instance. Different processing is necessary because the
events have a different meaning depending on the platform that is used.

3.3 Sending data

A goal in regard to the replacement implementation is to provide I/O operations in a non-blocking man-
ner. As a result, the replacement implementation takes a different approach to sending data. First, this
section describes how data is sent within the existing implementation. This is followed by a description
of the approach of the replacement implementation. The approach to sending data in the replacement
implementation has been inspired by the libuv library. Libuv is a library which is used to provide
asynchronous I/O operations in Node.js [10].

The existing implementation uses a local select call which blocks to guarantee that the data is sent or
an error is returned before the program continues. The following figure illustrates how data is sent in
the existing implementation:

19



Note that the use of local means that a single file descriptor is being monitored instead of all the file
descriptors that are being monitored by the program.

One of the goals of the thesis is to retrieve I/O events in a single location within the code instead of
several locations. This location is the same for IPC I/O events and network I/O events. Retrieving I/O
events in a single location makes the implementation more maintainable. Furthermore, it enables code
reuse when processing the events. In addition, an important goal of the thesis is to perform all I/O
operations in a non-blocking manner. The internal implementation of iTasks depends on the event loop
being evaluated regularly. Without the event loop being evaluated, it is not possible to react to events.
Performing all I/O operations in a non-blocking manner makes sure that the event loop is regularly
evaluated. Furthermore, this is required for horizontally scaling iTasks applications, which is a future
goal of the iTasks project. The way data is sent has been changed to be able to realise these goals.

The replacement implementation sends data differently depending on whether a reactive or proactive
I/O multiplexing is used. First, the process of sending data for reactive I/O multiplexing mechanisms
is described. The reactive mechanisms that are used are kqueue (macOS) and epoll (Linux). This is
followed by an explanation to how data is sent by IOCP. IOCP (Windows) is a proactive I/O multiplexing
mechanism. The difference between proactive and reactive I/O multiplexing mechanisms is described in
section 3.2.

The overview included below illustrates how data is sent by the reactive I/O multiplexing mechanisms.
As stated, the reactive mechanisms are kqueue (macOS) and epoll (Linux).

Figure 3.2: Sending data on Linux/macOS
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When using reactive mechanisms, storing the data to be sent is required. This is a result of the replace-
ment implementation not attempting to send data unless the file descriptor is writable. As a result of
evaluating callbacks or evaluating tasks, output to be sent over a socket or pipe is queued.

In the replacement implementation, events are retrieved once every iteration of the event loop. Retrieving
the I/O events is the first thing that happens in an event loop iteration. As a result, detecting that a
file descriptor is writable may only happen in iterations that follow the iteration where the data itself is
queued.

It may be possible that a file descriptor is not writable during the next iteration of the event loop but
more data is queued. To handle this situation, the data that has to be sent is stored. To store the data, a
write queue is used. The reasoning behind using a queue is that the operations that are used (enqueuing,
dequeuing, checking whether the queue is empty) can be performed in constant time. Furthermore, using
a queue naturally allows to maintain the order of the data which is to be sent.

Once the file descriptor becomes writable, the write queue is emptied and the data it contains is sent
in a non-blocking manner. This happens in order. When the queue is empty, the file descriptor is no
longer monitored for writability until there is more data to be sent. The processIdle function is used
to monitor the file descriptor for writability if any data was queued during an event loop iteration.

If the file descriptor stops being writable while data is being sent, the file descriptor remains being
monitored for writability. During further evaluations of the event loop, the file descriptor may become
writable again. When this happens, another attempt is made at sending the data contained in the queue.

The overview included below illustrates how data is sent when IOCP (Windows) is used. IOCP is a
proactive I/O multiplexing mechanism.

Figure 3.3: Sending data on Windows

When using IOCP, there is no notion of readability/writability as IOCP is a proactive I/O multiplexing
mechanism. In the case of using IOCP the data would not have to be queued. However, doing so makes
the internal implementation more harmonious. On Windows, processIdle initiates asynchronous send
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operations for the data contained within the write queue. As a consequence, the data is sent over to the
peer. The data is sent over the connection in order.

In conclusion, sending data may be delayed until a later moment thanks to both approaches for sending
data. Being able to delay the sending of data is required for implementing non-blocking I/O. Performing
I/O in a non-blocking manner is beneficial because it becomes impossible for an iTasks to block in regard
to performing network I/O and IPC operations. As a result, the event loop is always evaluated regularly.
In addition, this is necessary step for being able to horizontally scale iTasks applications, which is a
future goal of the iTasks project. Furthermore, the new approach does not require retrieving events for
an individual file descriptor. As a result, events can be retrieved in a single location.

The trade-off of this approach is that it complicates the process of sending data. As iTasks is a platform-
independent library, the reactive and proactive approach required to be unified to a single platform-
independent implementation. In addition, requiring the sending of data to be delayed to a later point in
time naturally makes the implementation more complicated. As a result, the implementation of sending
data is more complicated than the existing one.

3.4 Discussion

Like the existing implementation, the replacement implementation provides an HTTP server implemen-
tation. Furthermore, the tcplisten and tcpconnect tasks are provided through the same types as the
existing implementation. The aforementioned tasks are used to provide network I/O to the end user. The
replacement implementation also features an externalProcess task that allows to execute an external
process and communicate with it. The replacement implementation also introduces a new task called
externalProcessHandlers. This task allows to define how communication should occur in a similar
style as the tcplisten and tcpconnect tasks.

Unlike the existing implementation, the replacement implementation provides IPC and network I/O
through a single approach. To make this possible, the select I/O multiplexing mechanism was replaced
for the IOCP, kqueue and epoll I/O multiplexing mechanisms. The network I/O and IPC functionality
that is provided by the replacement implementation rely on the replacement I/O multiplexing mecha-
nisms. Pipes (IPC) are now monitored using an I/O multiplexing mechanism instead of the time-based
approach used by the existing implementation (see section 2.3.3). The retrieval and processing of I/O
events is unified to a single location instead of a several locations throughout the code. Furthermore, all
I/O operations are performed in a non-blocking manner. This is beneficial as this ensures that iTasks
applications will not block when performing I/O. This is required for horizontally scaling iTasks appli-
cations, which is a future goal of the iTasks project. Events are retrieved in a single location for both
the IPC and network I/O functionality.

A drawback to the replacement implementation is that different I/O multiplexers are used on different
operating systems instead of a single mechanism. This complicates the implementation. Furthermore,
implementing operations in a non-blocking manner complicates the internal implementation as well. This
is especially the case for sending data.
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Chapter 4

Existing Implementation - The HTTP Server

iTasks is a general-purpose framework for developing web applications. To host web applications built
using iTasks, it is not necessary to explicitly setup an HTTP server (e.g: nginx, Apache) to serve the
website content. The internal implementation of iTasks sets up an HTTP server itself when executing
an iTasks application. The HTTP server makes sure that client requests are properly processed. The
processing of requests may lead to sending responses to the involved clients. As a result, the HTTP
server and connected clients are able to communicate.

Usually, clients will make use of a browser to request web pages that are served by the HTTP server.
In this case, the browser can be seen as the client. Clients and the HTTP server rely on network
I/O (TCP) to communicate. The internal implementation of the HTTP server depends on an I/O
multiplexing mechanism to perform network I/O. In the existing implementation this is the select I/O
multiplexing mechanism.

A goal of this thesis is to replace the select I/O multiplexing mechanism for the kqueue, epoll and
IOCP I/O multiplexing mechanisms. Since the I/O multiplexing mechanism is replaced, the internal
implementation of the HTTP server is changed as well. This is a result of the HTTP server relying on the
I/O multiplexing mechanism. This chapter provides an overview of how the HTTP server is implemented
in the existing implementation. Furthermore, the chapter aims to describe how the website content is
provided to the end-user when accessing an iTasks web application using a browser. Some documentation
on this particular topic already existed when writing this thesis [14]. This chapter benefited from
this documentation. By examining the HTTP server, the drawbacks to the existing HTTP server are
identified. The replacement implementation of the HTTP server attempts to provide solutions for these
drawbacks.

4.1 Communication between clients and the HTTP server

The overview included below illustrates how a browser may communicate with the HTTP server.

Figure 4.1: Communication between a browser (client) and the iTasks HTTP Server.

As stated, the iTasks HTTP server may communicate with clients through network I/O. The listener
socket and client sockets that are involved in this communication are monitored by the I/O multiplexing
mechanism. The onConnect, onData and onTick callbacks are used to process events and possibly
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send responses (data) back to the client for which the event occurred. Note that the onDisconnect
callback may not send data back to the client. Clients that disconnect from the HTTP server are cleaned
up. The HTTP server makes use of the HTTP and WebSocket protocols to send and receive data.
WebSocket and HTTP are both communication protocols which function on top of the socket network
I/O communication channel.

WebSocket is the communication protocol which is used to send task events. In addition, WebSocket is
used to send task event responses from the server. Task events are any events related to executing a task
which is served by the iTasks web application. For example, a task event may occur because the user
entered a value in a text field or submits a form.

HTTP is the communication protocol which is used to request/provide static resources (e.g: .js and .css
files, icons). In addition, HTTP is used to establish the WebSocket connection. This is standard for
the WebSocket protocol [15] (see section 1.3 of the specification). The different protocols are mentioned
because the performance metrics for responding to task events and for requesting static resources were
separately benchmarked when benchmarking the HTTP server.

The onConnect, onData and onTick callbacks are part of a callback record which is used for processing
network I/O events. The type of this callback record is provided below. This is followed by an explanation
of what processing is performed by the callbacks in the context of the HTTP server.

: : Output :== Str ing
: : Close :== Bool
: : PeerAddress :== Str ing
: : Data :== Str ing
: : FD :== Int
: : ConnectionHandlersIWorld l r w =

{ // Used by HTTPServer .
onConnect : : FD -> PeerAddress -> r -> ∗IWorld

-> ∗(MaybeErrorString l , ? w , [Output ] , Close , ∗IWorld )
, onData : : Data -> l -> r -> ∗IWorld

-> ∗(MaybeErrorString l , ?w , [Output ] , Close , ∗IWorld )
, onTick : : l -> r -> ∗IWorld

-> ∗(MaybeErrorString l , ? w , [Output ] , Close , ∗IWorld )
// Unused by HTTPServer .

, onShareChange : : l -> r -> ∗IWorld
-> ∗(MaybeErrorString l , ? w , [Output ] , Close , ∗IWorld )

, onDisconnect : : l -> r -> ∗IWorld
-> ∗(MaybeErrorString l , ? w , ∗IWorld )

, onDestroy : : l -> ∗IWorld
-> ∗(MaybeErrorString l , [Output ] , ∗IWorld )

}

Some functions in the callback record are not actively used by the HTTP server. The unused callbacks
are present to allow end-user network I/O events to be processed in the same way as HTTP server I/O
events. End-user Network I/O that is provided by iTasks may use the callbacks that are not used by the
HTTP server. The HTTP server implementation defines callbacks that do not have any effects for the
callbacks that are not actively used. This does not mean that disconnected clients do not get cleaned
up since there is no onDisconnect, however. The callbacks are used to define specific behavior and
disconnected clients are cleaned up by default. The callbacks in the callback record provided to the
HTTP server are processed in the same manner as the callbacks provided to the end-user network I/O
tasks. This is possible because the callbacks provided to the end-user network I/O tasks are converted to
a callback record of the type included above. As a result, the internal implementation of the HTTP server
is very similar to the internal implementation of end-user Network I/O and a significant amount of code
is reused. Chapter 6 describes how end-user network I/O is provided in the existing implementation.

As stated, the onConnect, onData and onTick callbacks are used by the HTTP server to process events.
The processing that is performed by these callbacks for the HTTP server is described below:
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1. When a client connects to the HTTP server, a connection event is returned by the I/O multiplexing
mechanism. This connection event is processed by evaluating the onConnect callback. In the case
of the HTTP server, the onConnect callback verifies that the IP address of the client is on the
allowlist of the HTTP server. The allowlist defines which IP addresses may access the HTTP
server.

2. An I/O event may occur when data is received from a client. Receiving data results in evaluating
the onData callback. The onData callback is used to process client requests. This could be a
request for a web page that is served by the HTTP server. Furthermore, the onData callback is
used to process task events. A task event may occur when the clients enters a value in a text field
on the website or submits a form, for instance. The onData callback parses the HTTP/WebSocket
requests that are sent by clients. Furthermore, the onData callback may provide output data. As
a result, a response – containing the output data – may be sent back to the client. To give an
example, this response could consist of the web page which the client requested. Essentially, the
response is text which is interpreted by the browser, leading the browser to visualize a web page.

3. The onTick callback is evaluated every event loop iteration. As a reminder, iTasks makes use of
an event loop which is repeatedly evaluated throughout the execution of the program. The event
loop is used to retrieve and process events. The onTick callback ensures that the connected clients
are still active. The clients that are connected to the HTTP server regularly send keep-alive data
to the HTTP server and the onTick callback is used to close the connections of clients that did
not send their keep-alive data in time.

Furthermore, the processing of task events of a client may lead to task output. Task output is
stored in a SDS (Shared Data Source). During the onTick function, the Task output for the given
client is sent. In the context of this thesis, it is not necessary to completely understand this process.

In addition, clients use the HTTP server to work on tasks. Multiple clients may work on different
instances of the same task. During the onTick it is verified that the instances of the task the client
is working on are the instances of the task started by the client. This is done to prevent clients
affecting task instances of other clients. Each task instance may only have a single client working
on the instance.

The way the onTick callback is processed by the existing implementation could be improved. The
improvements that could be made are described in more detail in section 4.2.

A more concrete example is provided below. This example is included to show how the callbacks are
used when interacting with clients. Requesting a page hosted by an iTasks web application using the
browser generally leads to the following sequence of actions:

1. The browser of the client establishes a connection to the listener socket of the HTTP server.

2. The HTTP server evaluates the onConnect callback, which leads to verifying that the IP address
of the client is contained within the allowlist of the HTTP server. If this is not the case, the server
sends an HTTP 403 error page to the client and closes the connection.

3. If the client is part of the allowlist, the client will proceed by requesting a web page from the HTTP
server.

4. The request will lead to the onData callback being evaluated. The onData callback processes the
request and responds with the web page.

5. The client receives the web page and the browser will detect that the requested web page depends
on static resources. Examples of static resources are javascript/css files and icons. The browser
detects which static resources are required and requests the static resources from the iTasks HTTP
Server using HTTP requests. The iTasks HTTP server processes the requests and responds with
the static resources that were requested, using the onData callback.

6. A static resource dependency included for any iTasks web page is a javascript file called itasks-
core.js. This javascript file is obtained from the HTTP server. When the requested web page
loads, javascript is used to establish a WebSocket connection to the iTasks HTTP Server. The
WebSocket request is processed by the onData callback. WebSocket makes use of regular network
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I/O sockets as a underlying communication channel. The WebSocket communication protocol is
used to process task events.

7. Using the WebSocket connection, the client attaches to a particular instance of a task by sending
the server a WebSocket message, which is processed by the onData callback. As a result, the server
is aware of the particular task the client is working on.

8. As a result of attaching to the task, the servers sends data to the client which is used to determine
which UI components should be included on the web page. The UI components are then visualized
on the web page by the browser (client) using javascript. As a result, the browser will visualize
the input fields, submit buttons and other UI components that are related to performing the task.
In the existing implementation, this data is sent through the onTick callback. The replacement
implementation takes a different approach to the processing that is done by the onTick callback
in the existing implementation. This approach is described in chapter 5.

9. Furthermore, javascript is used to monitor the web page for user interaction, such as the user editing
an input field or submitting a form. The WebSocket connection is used to send events indicating
such user interaction to the iTasks HTTP server. The iTasks HTTP server then responds to these
events using the WebSocket connection. This response may then lead to changes to the UI of the
web page.

4.2 Internal implementation

The internal implementation of the HTTP server closely resembles the internal implementation of the
tcplisten task. The internal implementation of the tcplisten task is described in section 6. The call
graph below illustrates how the iTasks HTTP server is created and monitored for I/O:
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Figure 4.2: Internal implementation of the iTasks HTTP server

If the specification of the iTasks program involves a web-based task, an HTTP server is created to serve
the task. A web-based task is a task that relies on the HTTP server to be executable. Setting up an
HTTP server happens through the serve function. The serve function:

1. Creates a listener socket for the HTTP server.

2. Monitors the listener socket for incoming connections using the I/O multiplexing mechanism.

3. Starts the event loop by calling the loop function.

The loop function:

1. Retrieves the I/O events on the file descriptors that are being monitored using select. This will
include the listener socket of the HTTP server. Furthermore, this includes the sockets of the clients
that are connected to the HTTP server.

2. Processes the I/O events that were retrieved using process. In the case a client connected to
the HTTP server, the onConnect callback is processed. In the case data was received on a client
socket that is connected to the HTTP server, the onData callback is processed. The onConnect
and onData callbacks may produce output which is sent in a blocking manner.

3. Performs the processing that should happen every iteration of the event loop for the sockets that
are being monitored using process. This means that, for every connected client, the onTick and
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onShareChange callback are processed. This happens every event loop iteration for every client
that is connected to the HTTP server. The onShareChange and onTick callback may send data
in a blocking manner.

The onShareChange callback is not actively used by the HTTP server. However, it may be used
by end-user network I/O. Since I/O events are processed the same way for the HTTP server
and end-user network I/O, the callback is still evaluated. In the existing implementation, the
onShareChange callback of the connected clients is evaluated for every client every event loop
iteration. This can be considered a bug, as the onShareChange callback name implies that it
should only be evaluated when the SDS (Shared Data Source) that is associated with the HTTP
server changes. A SDS is a means to share data within an iTasks application. This does not
pose problems for the HTTP server as the onShareChange callback defined by the HTTP server
does not have any effect. However, evaluating the onShareChange callback involves reading from a
SDS once every event loop iteration per client. This read is unnecessary in the case of the HTTP
server. Reading from a SDS is a relatively expensive operation. As a result, not evaluating the
onShareChange callback should increase the scalability of the HTTP server.

The onTick callback is evaluated every event loop iteration. In the onTick callback, it is checked
whether the clients are still active. The clients that are connected to the HTTP server regularly
send keep-alive data to the HTTP server and the onTick callback is used to close the connections
of clients that did not send their keep-alive data in time.

Furthermore, the processing of task events of a client may lead to task output. Task output is
stored in a SDS. The onTick function is used to the task output of the connection clients. In the
context of this thesis, it is not necessary to completely understand this process. This is mentioned
because this involves reading the SDS which is used to store Task Output every event loop iteration
for every client. After sending the task output for a client, the SDS is written to again to clear
the Task output. Reading and writing to a SDS are expensive operations. This means that the
operations take a relatively long amount of time to perform.

In addition, clients use the HTTP server to work on tasks. Multiple clients may work on different
instances of the same task. During the onTick it is verified that the instances of the task the client
is working on are the instances of the task started by the client. This is to prevent clients altering
task instances of other clients. This process involves reading a SDS every event loop iteration for
every client. Again, reading a SDS is a relatively expensive operation.

It was discovered that instead of using the onTick, the task output and verification of task instances
could be processed at once for all clients that use the HTTP server instead of individually through
the onTick callback. As a result, two SDS reads and 1 SDS write would have to be performed in
total per event loop iteration. The existing HTTP server uses 2 SDS reads and 1 SDS write per
event loop iteration per connected client. This results in having to perform significantly less SDS
reads and writes as more clients are connected to the HTTP server. As a result, this discovery lead
to the goal of optimizing this process for the HTTP server in the replacement implementation.

4. Evaluates the loop function again, repeating the above.

Sending data is done in a blocking manner in the existing implementation. A goal when implementing the
replacement implementation is to send data in a non-blocking manner. This is beneficial because having
the event loop block results in the iTasks server becoming unresponsive and this should be avoided.
Sending data is done using a non-blocking call. However, if this call fails the socket is individually
monitored for writability using a blocking select call. As a result, the implementation effectively sends
data in a blocking manner.

Reading data may also block in exceptional circumstances. The existing implementation waits for a
readability event indicating that data may be read. After this, a non-blocking read operation is performed
to read the data. However, if this non-blocking read fails, a blocking select call is performed to wait for
readability on the involved socket. This call leads to either being able to read data or the server becoming
unresponsive. As mentioned in the manual for select [2] (see the "Bugs" section), it is advised to use
a non-blocking approach to reading instead to be safer. In the current situation, the non-blocking read
could fail even though readability was indicated. At that point there is no guarantee that file descriptor
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becomes readable again, making it possible that the iTasks server blocks indefinitely waiting for the file
descriptor to become readable using select. Of course, this is a very exceptional circumstance but this
could lead the iTasks server to become unresponsive. Reading in a non-blocking manner would rule out
this possibility.

Another goal of the thesis is to retrieve I/O events in a single location. By using a non-blocking approach
to reading and sending data, the select calls that are currently being performed are not necessary
anymore and I/O events can be retrieved in a single location.

4.3 Summary

To summarize, the iTasks HTTP server relies on the select I/O multiplexing mechanism. Clients are
able to communicate with the HTTP server by connecting to a listener socket. After connecting, the
HTTP server uses the onConnect, onData and onTick callbacks to communicate with the connected
client.

The following points of improvement were identified by examining the existing HTTP server:

• The processing done by the onTick callback should be optimized. This is done with the goal of
improving the scalability of the HTTP server.

• The onShareChange callback should not be evaluated for the HTTP server as it is not used. This
is useful as it further increases the scalability of the HTTP server.

• Reading and sending data should be performed in a non-blocking manner. This is required for being
able to horizontally scale iTasks web applications, which is a future goal of the iTasks project.

• Events should be retrieved in a single location for all forms of I/O. As a result, retrieving events
on individual file descriptors when non-blocking operations fail should not be done.

• The HTTP server should use the replacement I/O multiplexing mechanisms. The select I/O
multiplexing mechanism is replaced to be able to provide IPC and network I/O through a single
approach.
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Chapter 5

Replacement Implementation - The HTTP server

This chapter describes the implementation of the HTTP server within the context of the replacement im-
plementation. In addition, this chapter describes to what extent the replacement HTTP server improved
upon the existing HTTP server.

The HTTP server communicates with connected clients in the same way as in the existing implementa-
tion. As a result, section 4.1 applies for the replacement implementation as well. There is one exception,
which is that the callback record has been changed. The callback record used by the replacement imple-
mentation is of the following type:

: : Output :== Str ing
: : Close :== Bool
: : PeerAddress :== Str ing
: : Data :== Str ing
: : FD :== Int
: : ConnectionHandlersIWorld l r w =

{ // Used by HTTPServer .
onConnect : : FD -> PeerAddress -> r -> ∗IWorld

-> ∗(MaybeErrorString l , ? w , [Output ] , Close , ∗IWorld )
, onData : : Data -> l -> r -> ∗IWorld

-> ∗(MaybeErrorString l , ?w , [Output ] , Close , ∗IWorld )
, onTick : : l -> ∗IWorld

-> ∗(MaybeErrorString l , Close , ∗IWorld )
// Unused by HTTPServer .

, onShareChange : : l -> r -> ∗IWorld
-> ∗(MaybeErrorString l , ? w , [Output ] , Close , ∗IWorld )

, onDisconnect : : l -> r -> ∗IWorld
-> ∗(MaybeErrorString l , ? w , ∗IWorld )

, onDestroy : : l -> ∗IWorld
-> ∗(MaybeErrorString l , [Output ] , ∗IWorld )

}

The type of the onTick callback has been changed. This poses no problems for end-user network I/O
and the rest of iTasks as the onTick callback is only used by the HTTP server. Due to the optimizations
that were made to the onTick , the task output SDS value is no longer provided as it is no longer needed.
These optimizations are described in more detail in section 5.1. As the onTick callback is now only used
for checking that the connected clients are still active, there is no need to send output anymore. The
new implementations of the end-user network I/O tasks now convert the provided callback record to a
callback record of this type instead. As a result, processing events for the HTTP server and end-user
network I/O can be done in the same manner in the replacement implementation as well.
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5.1 Internal implementation

The internal implementation of the HTTP server closely resembles the internal implementation of the
tcplisten task. The internal implementation of the tcplisten task is described in section 7.

The call graph below illustrates how the iTasks HTTP server is created and monitored for I/O:

Figure 5.1: Internal implementation of the iTasks HTTP server

If the specification of the iTasks program involves a web-based task, an HTTP server is created to serve
the task. This happens through the serve function. The serve function:

1. Creates a listener socket for the HTTP server.

2. Monitors the listener socket for incoming connections using the I/O multiplexing mechanism.

3. Proactively accepts a connection request on the listener socket when using the IOCP I/O multi-
plexing mechanism (Windows). This is required because IOCP is a proactive I/O multiplexing
mechanism. The difference between reactive and proactive I/O multiplexing mechanisms is de-
scribed in section 3.2.

4. Starts the event loop by calling the loop function.

The loop function:

1. Retrieves the I/O events on the file descriptors that are being monitored. This is done using a
replacement I/O multiplexing mechanism depending on the target platform. kqueue is used on
macOS, epoll is used on Linux and IOCP is used on Windows. The set of monitored file descriptors
contains the listener socket of the HTTP server. In addition, the set of monitored file descriptors
contains the sockets of the clients that are connected to the HTTP server.
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2. Processes the I/O events that were retrieved on the monitored file descriptors. When a client
connects to the HTTP server, the onConnect callback is processed. In the case of receiving data
on a client socket that is connected to the HTTP server, the onData callback is processed. Data
is now read in a non-blocking manner. Furthermore, instead of sending the data in a blocking
manner, the onConnect and onData callbacks queue output that should be sent. This approach
allows to delay sending data. This is useful when sending data in a non-blocking manner.

3. Performs the idle processing that is related to the sockets that are being monitored. Idle processing
involves the processing that is done every event loop iteration, independent of the I/O multiplexing
mechanism returning events. This means that, for every connected client, the onTick callback is
processed. This happens every event loop iteration for every client that is connected to the HTTP
server. In the replacement implementation, the onTick callback is used to verify that the connected
clients sent their keepalive data in time, indicating that the client is still alive. Sending the task
output – which used to happen through the onTick callback for each individual client – is now
done at once for all clients using the processTaskOutput function. Similarly, verifying that the
task instances which the clients are attached to are theirs is also done at once. The new approach
to processing the onTick has the same effect but scales significantly better. This is shown in the
benchmark of the HTTP server (see figure 10.2.1).

As stated, in the replacement implementation, output that is to be sent is queued. The proces-
sIdle function makes sure the queued output is sent over to the peer in a non-blocking manner.
The process of sending data within the replacement implementation is described in more detail in
section 3.3.

4. Evaluates the loop function again, repeating the above.

5.2 Summary

The replacement implementation provides solutions for the points of improvement that were listed for
the existing implementation of the HTTP server (see section 4.3). This means that, in the replacement
implementation of the HTTP server:

• The processing that used to be done by the onTick callback has been optimized. This lead to a
significant scalability improvement as is shown by the benchmark of the HTTP server, see figure
10.2.1.

• The onShareChange callback is not evaluated for the HTTP server as it is not used but does involve
an expensive SDS read for every connected client for every event loop iteration. This increases the
scalability of the iTasks HTTP server as well.

• Reading and sending data is performed in a non-blocking manner. This ensures that the event
loop does not block when handling network I/O and IPC events. This is useful because iTasks may
not respond to other events when the implementation does block. This is required for horizontally
scaling iTasks applications.

• Events are retrieved in a single location for all forms of I/O that are provided by the replacement
implementation (network I/O and IPC). This simplifies the implementation.

• The HTTP server makes use of the replacement I/O multiplexing mechanisms. That means that
epoll is used on Linux, kqueue is used on macOS and IOCP is used on Windows. This allows to
provide a conceptually equivalent model for providing IPC and Network I/O.
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Chapter 6

Existing Implementation - Network I/O

This chapter aims at giving an overview of how the existing implementation provides network I/O
functionality to the end-user. In iTasks, the ability to perform network I/O is provided to the end-users
through the tcplisten and tcpconnect tasks. This chapter provides an end-user perspective which
describes how the tcplisten and tcpconnect tasks can be used. Furthermore, this chapter provides
an overview of the internal implementation of the tcplisten and tcpconnect tasks. The drawbacks
to the existing implementation of the aforementioned tasks are identified. This is done with the aim of
providing solutions for these drawbacks in the replacement implementation.

The tcplisten task is used to setup a listening socket which listens for connection requests over TCP.
This essentially sets up a TCP server. The end-user provides the tcplisten task a callback record which
defines how the TCP server should communicate with the clients that connect to the listening socket.
As a result, the tcplisten task is conceptually similar to the HTTP server. The HTTP server has been
discussed in the two preceding chapters. The HTTP server makes use of predefined callbacks while the
tcplisten task makes use of callbacks that are defined by the end-user.

The tcpconnect task is used to connect to a TCP server as a client. The end-user provides this task a
callback record which defines how the client communicates with the TCP server it connected to.

The end-user may make use of a custom communication protocol when using tcplisten and tcpconnect.
For example, an iTasks extension which allows to send email using the SMTP protocol makes use of
tcpconnect.

For the most part, the tcplisten and tcpconnect tasks abstract from the internal implementation.
As a consequence, the end-user does not need to be aware of the internal implementation to make use
of network I/O. For instance, to use network I/O operations, the end-user does not need to be aware
of the I/O multiplexing mechanism at all. Nonetheless, the tcplisten and tcpconnect tasks rely on
the select I/O multiplexing mechanism internally. The select I/O multiplexing mechanism is used
to monitor the sockets that are involved in network I/O communication. As a result, the program can
react to a listening socket receiving a connection request, for instance.

6.1 End-user perspective

The tcplisten task sets up a TCP listener which listens for connections. The tcpconnect task connects
to a TCP listener. An overview of how these tasks could interact is included below.
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Figure 6.1: How iTasks provides network I/O to end-users.

The above figure gives an overview of how the tcplisten and tcpconnect tasks could interact. Note
that tcplisten does not require that clients that connect use the tcpconnect task, any TCP connection
request may be accepted. Likewise, tcpconnect does not require that the server that is connected to uses
the tcplisten task, it can connect to any TCP server. Similarly to how tcplisten and tcpconnect
abstract from the internal implementation, this overview hides the internal implementation as well.

When a client successfully connects to the server, accepting the connection will return a socket that can
be used to communicate with the client that connected. This is illustrated by the accept operation
leading to the creation of a client socket. Both the tcpconnect and tcplisten tasks take a record of
callback functions that are provided by the end-user. The record contains the following callbacks:

• onConnect, which is a callback that is evaluated when a TCP connection is established. In the
case of using tcpconnect, this callback is evaluated after successfully connecting to the server. In
the case of using tcplisten, this callback is evaluated whenever a client successfully connected to
the server.

• onData, when the socket receives data, this callback is evaluated.

• onShareChange, this callback is invoked every event loop iteration (which is considered to be a
bug).

• onDisconnect, when a peer (socket on the other end of the connection) disconnects, this callback
is evaluated.

• onDestroy when the task is destroyed, this callback is evaluated. This happens when the iTasks
program terminates, for instance.

Note that the onTick callback – which is used by the HTTP server – is not defined by the end-user.
tcplisten and tcpconnect convert the callback record provided by the end-user to a callback record of
the same type as the HTTP server. This is done to be able to process events for the HTTP server and
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end-user network I/O in the same manner. As a result, tcplisten and tcpconnect internally define a
callback that has no effect for the onTick callback.

As the overview illustrates, evaluating certain callbacks in the figure results in output. This output is
sent over the network connection. The I/O multiplexing mechanism monitors the clients for readability.
When a client socket becomes readable and data is received, the onData callback is evaluated. The
onData callback may produce output and send data back to the peer. This enables clients and servers to
communicate. At this point, the general idea of how the tcplisten/tcpconnect tasks provide network
I/O to the end-users has been described. This is followed by a description of how the tcplisten and
tcpconnect tasks may be used by the end-user.

The tcplisten task has the following type:

t c p l i s t e n : : Int Bool ( sds ( ) r w) (ConnectionHandlers l r w) -> Task [ l ]
| iTask l & iTask r & iTask w & RWShared sds

The tcplisten task takes the following arguments:

• A port to listen on.

• A boolean indicating whether the connection state of the client should be removed when a client
disconnects.

• A shared data source (SDS) which is used to give the callbacks access to a custom value of a type
determined by the end-user. The callbacks may modify this value.

• A record of callbacks (ConnectionHandlers) which are used to react to certain events occurring.

: : Output :== Str ing
: : Close :== Bool
: : PeerAddress :== Str ing
: : Data :== Str ing
: : ConnectionHandlers l r w =

{ onConnect : : ConnectionId -> PeerAddress -> r
-> (MaybeErrorString l , (? w) , [Output ] , Close )

, onData : : Data -> l -> r
-> (MaybeErrorString l , (? w) , [Output ] , Close )

, onShareChange : : l -> r
-> (MaybeErrorString l , (? w) , [Output ] , Close )

, onDisconnect : : l -> r -> (MaybeErrorString l , (? w) )
, onDestroy : : l -> (MaybeErrorString l , [Output ] )
}

The tcpconnect task has the following type.

tcpconnect : : Str ing Int (?Timeout ) ( sds ( ) r w)
(ConnectionHandlers l r w) -> Task l
| iTask l & iTask r & iTask w & RWShared sds

The tcpconnect task takes the following arguments:

• An IP address to connect to.

• A port to connect to.

• Optionally, a timeout value. If there is no timeout value given, the connection attempt will block
until it is successful. Otherwise, it will block for the duration of the timeout value.

• Similar to tcplisten, tcpconnect takes a SDS and ConnectionHandlers record.

An example program which evaluates the tcplisten task on startup is included below:
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module l i s t e n

import iTasks

Start w = doTasks ( onStartup l i s t e n ) w

l i s t e n : : Task [ Str ing ]
l i s t e n = t c p l i s t e n port removeOnClose nu l l handlers
where

port = 1234
removeOnClose = Fal se

connect : : Task Str ing
connect = tcpconnect "localhost" port timeout nu l l handlers
where

port = 80
timeout = ?None

nu l l : : SDSSource ( ) ( ) ( )
nu l l = nul lShare

handlers : : ConnectionHandlers Str ing ( ) ( )
handlers = {ConnectionHandlers |

onConnect = \ c id h r -> (Ok "initConState" , ?None , [h ] , Fal se )
, onData = \data conState r -> (Ok conState , ? Just r , [ "out" ] ,

True )
, onShareChange = \ conState r -> (Ok conState , ?None , [ ] , Fal se )
, onDisconnect = \ conState r -> (Ok "newConState" , ?None ) ,
, onDestroy = \ conState -> (Ok conState , [ "out" ] )
}

In the above program, the listen task is evaluated on startup. This leads to the tcplisten task
being evaluated. The tcplisten task starts listening for TCP connections on the specified port, 1234
in this case. The handlers record provides callback functions that are used to communicate with the
clients that connect to the TCP listener. Similarly, the connect task could have been evaluated on
startup instead to connect to a TCP listener that listens on port 80. The tcpconnect task also takes
a ConnectionHandlers record as a parameter. This record is used to define how the iTasks program
should interact with the server it connected to in the case of using tcpconnect.
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6.2 Internal implementation - Overview

Figure 6.2: Overview of existing network I/O implementation.

The internal implementation of the tcplisten task closely resembles the internal implementation of the
HTTP server. The HTTP server has been described in chapter 4. Like the HTTP server, the internal
implementation of end-user network I/O relies on the select I/O multiplexing mechanism.

The internal implementation is described according to the example program included in section 6.1.
Evaluating the doTasks function from the Start function signifies that an iTasks program is used.
The doTasks function will call the serve function. The tcplisten or tcpconnect tasks are executed
onStartup. As a result, the serve function starts a process which leads to evaluating the tcpconnect
or tcplisten task, depending on which one is used.

Evaluating the tcpconnect task results in a socket being created. This socket is used to establish a
connection to the server that is specified by the end user. The connection is established in a blocking
manner. As a reminder, one of the goals of the thesis is to implement all of the I/O operations in a
non-blocking manner in the replacement implementation. As a result, a goal for the replacement imple-
mentation is to establish connections in a non-blocking manner instead. When the connection attempt
is accepted, the socket is monitored for I/O activity using the select I/O multiplexing mechanism.

Evaluating the tcplisten task results in a listening socket being created. This listening socket starts
listening for TCP connections on the port that was specified by the end-user. Afterwards, this file descrip-
tor is monitored for readability using the select I/O multiplexing mechanism. As a result, whenever
a client attempts to connect to the server, the socket becomes readable. The existing implementation
reacts to the socket being readable by accepting the connection request. This results in a client socket
being created, which is monitored by the select I/O multiplexing mechanism. Client sockets created
through accept (tcplisten) and connect (tcpconnect) are monitored in the same manner. Events on
such client sockets are processed in the same manner as well.

At this point, the sockets involved in I/O communication are created and monitored by the select I/O
multiplexing mechanism. This is the case regardless of whether tcplisten or tcpconnect is used. The
serve function proceeds by starting the event loop. This happens by evaluating the loop function.

The loop function calls select to retrieve I/O events on the monitored sockets. It then performs
processing for the monitored sockets through the process function. The process function evaluates the
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callbacks that are provided to tcplisten and tcpconnect by the end-user. The onShareChange and
onTick are evaluated every event loop iteration for every client that is being monitored.

In the case of onShareChange this is considered to be a bug. The name of the onShareChange callback
implies that the callback should only be evaluated when the SDS provided to tcplisten or tcpconnect
is modified. As a result a goal of the replacement implementation is to implement an onShareChange
that is only evaluated when the SDS provided to tcplisten or tcpconnect changes.

The onTick callback does not have any effect when using tcplisten and tcpconnect. It may not
be specified by the end-user. However, evaluating this callback involves reading a SDS in the existing
implementation. This is a relatively expensive operation. The onTick callback is only used by the HTTP
server. The alterations to the HTTP server resulted in the onTick not longer requiring to read the SDS.
As a result, this read is also saved for the clients that are monitored as a result of the tcplisten and
tcpconnect tasks.

The onConnect callback is evaluated when a connection has successfully been established. The onData
callback is evaluated when data is received on a socket that is monitored.

The onDisconnect callback is evaluated when the peer closed the connection. By default, the socket
used to communicate with the peer is closed.

The callbacks that are provided to tcplisten and tcpconnect may return output to be sent to the
peer. The output is sent in a blocking manner. This could lead to the iTasks server blocking which is
undesirable as it render iTasks unable to respond to other events. As stated, a goal of the thesis is to
implement all I/O operations in a non-blocking manner. As a consequence, a goal for the replacement
implementation is to send the data in a non-blocking manner instead.

6.3 Summary

iTasks provides the tcplisten and tcpconnect tasks that allow end-users to perform network I/O.

The tcplisten task is used to setup a TCP server which listens for connections. The end-user may
define how the server communicates with the clients that connect with it through a callback record.

The tcpconnect task is used to setup a connection to a TCP server. The end-user provides tcpconnect
a callback record. The callbacks in this callback record define how the TCP server that was connected
to should be communicated with.

When examining the tcplisten and tcpconnect tasks, the following drawbacks were identified:

• The onShareChange callback is evaluated every event loop iteration for every monitored client. This
is considered to be a bug as onShareChange implies that the callback should only be evaluated
when the SDS changes.

• The callbacks provided to the tcplisten and tcpconnect tasks may return output. This output is
sent to the peer in a blocking manner. A general goal of the thesis is to perform all I/O operations
in a non-blocking manner. As a result, the implementation for sending data should be altered such
that data is sent in a non-blocking manner.

• Data may also be read in a blocking manner. Since the existing implementation of network I/O
only reads if the socket is readable, this will usually not cause trouble. However, in exceptional
circumstances reading data may block even though the socket is readable [2] (see "Bugs" section).
Therefore, reading data should be implemented in a non-blocking manner as well to be safe.

• The tcpconnect task establishes a connection the TCP server in a blocking manner. A goal of the
thesis is to implement all I/O operations in a blocking manner. Therefore, the connection should
be established in a non-blocking manner in the replacement implementation.

• The tcplisten and tcpconnect implementation rely on the select I/O multiplexing mechanism.
A general goal of the thesis is to replace the select I/O multiplexing mechanism to be able to
provide network I/O and IPC through a single concept. The existing implementation uses two
separate concepts for providing network I/O and IPC. As a result, the tcplisten and tcpconnect
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tasks should be re-implemented such that they make use of the replacement I/O multiplexing
mechanisms instead.
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Chapter 7

Replacement Implementation - Network I/O

This chapter discusses the implementation of end-user network I/O in the context of the replacement im-
plementation. The existing implementation of end-user network I/O has been described in the preceding
chapter. Like the existing implementation, the replacement implementation provides the tcpconnect
and tcplisten tasks for performing network I/O. The tcplisten task sets up a TCP server which
listens for connections. The tcpconnect task is used to connect to a TCP server as a client.

First, the chapter recaps how tcpconnect and tcplisten may be used by the end-user. This is followed
by a description of the internal implementation of tcplisten and tcpconnect. The internal imple-
mentation of tcplisten and tcpconnect is very similar to the internal implementation of the HTTP
server that was discussed in chapter 5. This chapter contains a more technical and detailed description
of the internal implementation of network I/O compared to the explanation of the HTTP server that is
provided in chapter 5. The internal implementation is described by first providing a simple overview of
the internal implementation of end-user network I/O. Afterwards, the chapter zooms in on this overview
and explains some of the underlying technical details that are important for making the implementation
work. Furthermore, this chapter discusses to what degree the replacement implementation improved
upon the existing implementation.

7.1 Providing network I/O to the end-user

Network I/O is provided to end-users in the exact same manner as in the existing implementation (with
one exception). As a consequence, almost everything that is described in section 6.1 applies for the
replacement implementation. The only exception is that an attempt was made at only evaluating the
onShareChange when the SDS provided to the tcplisten or tcpconnect task is changed. This used to
happen every iteration of the event loop. The approach used by the replacement implementation applies
an interesting idea but the solution that is used is considered to be fragile. The solution is fragile in the
sense that the onShareChange could still be evaluated more often than is necessary. This is discussed in
more detail in chapter 12.

An objective while developing the replacement implementation was to provide network I/O to end-users
in the same manner. The reasoning behind this being an objective is that it makes it easier to integrate
the replacement implementation within iTasks. Conceptually, it is only necessary to perform changes
to the internal implementation. The replacement I/O multiplexing mechanisms are all able to provide
similar indications for network I/O operations as the indications that select provides. As a result, it is
possible to provide network I/O to the end-users in the same manner.
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Figure 7.1: How iTasks provides network I/O to end-users.

As stated in section 6.1, The end-user defines callback functions and provides them to the tcplisten
and tcpconnect tasks. The callback functions are used to react to events occurring (e.g: data being
received). With the exception of the onDisconnect callback, the callback functions allow to send data
back to the peer as a response to a given event occurring. The data which is sent back is provided by
the end-user.

7.2 Internal implementation - overview

This section gives a general overview of the internal implementation of end-user network I/O. The fol-
lowing sections proceed by zooming in on this general overview and provide a more detailed description.
This is done with the aim of describing some of the technical details that make the replacement imple-
mentation work.
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Figure 7.2: Simplified overview of the internal implementation of network I/O in the context of the
replacement implementation.

On this level of abstraction, the internal implementations of tcplisten and tcpconnect are conceptually
the same. tcplisten creates a listener socket and accepts connections from clients. tcpconnect creates
a client socket and connects to the listener socket. All of the sockets that are involved in the network
I/O communication are monitored by the I/O multiplexing mechanism. Activity on the sockets may
result in evaluating callbacks and performing I/O operations. The internal implementation can be split
into two phases, a startup phase and a monitor phase. These phases are described separately to make
the implementation as a whole easier to understand.

7.3 Startup phase

This section describes the startup phase, the startup phase involves performing the following tasks:

• Creating a socket and either listening for connections (tcplisten) or connecting to the server (tcp-
connect).

• Starting the iTasks event loop.

• Monitoring the SDS that is provided to tcplisten or tcpconnect for changes in order to handle
the onShareChange callback.
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Figure 7.3: Callgraph for the startup phase of the tcpconnect and tcplisten tasks.

The tcpconnect and tcplisten tasks are evaluated on startup (see section 6.1). As a result, the
tcplisten/tcpconnect task are evaluated before starting the event loop. For either task, this leads to
a socket being created and monitored.

In the case of tcplisten, the created socket is a socket which is used to listen for connections. On
Linux/macOS, which use reactive I/O multiplexing mechanisms, this socket is monitored for readability.
A listening socket being readable means that a connection requested may be accepted. As a result, the
listening socket is monitored for connection requests. In the case of IOCP (Windows), an asynchronous
accept operation is initiated which leads to proactively accepting a connection request from a client.
The difference between proactive and reactive I/O multiplexing mechanisms is described in section 3.2.
Either way, when a client successfully connects to the server this leads to an event occurring. The event
is processed during the monitor phase.

In the case of tcpconnect, the created socket is a client socket. The program attempts to connect to
the server – which is specified by the end user – in a non-blocking manner. The file descriptor is then
monitored for writability. After the socket becomes writable, it is verified that the connection attempt
succeeded. This approach is based on the manual for connect [11] [12] (see EINPROGRESS). Technically, if
the connection attempt succeeded immediately it is not necessary to monitor for writability. The socket
will become writable either way so monitoring for writability is always done. This was done to simplify
the implementation. The connection attempt succeeding leads to an onConnect event being returned to
Clean, which is processed during the monitor phase.

Furthermore, the callback SDS which was provided to tcplisten/tcpconnect is monitored for changes.
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When the SDS changes, the onShareChange callback which is provided by the end user is evaluated and
processed. It should be noted that this approach improves on the approach of the existing implementa-
tion. The onShareChange in the existing implementation is evaluated and processed once every event
loop iteration, which can be considered a bug. In addition, the new approach may save a significant
number of SDS reads (1 read per event loop iteration per client if the SDS is never changed). However,
it is should be noted that this solution is fragile in the sense that the onShareChange callback may still
be evaluated more often than is necessary. This is described in more detail in 12.

When the startup phase ends, the program is in a state where:

• The I/O multiplexing mechanism is initialized.

• The event loop is started.

• In case of using tcplisten, a listening socket is created and monitored for connection requests.

• In case of using tcpconnect, a client socket is created and an attempt is made to connect to the
TCP server in a non-blocking manner.

• Interest has been registered in changes to the callback SDS that was provided by the end-user.
This is used to process the onShareChange callback in the monitor phase.

The startup phase is followed by the monitor phase.

7.4 Monitor phase

Figure 7.4: Callgraph for the monitor phase of the tcplisten and tcpconnect tasks.

During the monitor phase, the following tasks are performed:

• The callback SDS is monitored for changes. This is done with the goal of evaluating and processing
the onShareChange callback when the SDS is written to.

• The I/O Events that occured on the monitored sockets are retrieved and processed. This involves
evaluating and processing callbacks and performing I/O operations.

• The idle processing of the monitored file descriptors is done. Idle processing is performed every
event loop iteration for every monitored client. Idle processing is independent of the I/O multi-
plexing mechanism.

The tasks are described separately for clarity.
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7.4.1 Monitoring the callback SDS for changes

Figure 7.5: Callgraph which illustrates how the callback SDS is monitored for changes.

During the monitor phase, the callback SDS is monitored for changes. As the program is in the monitor
phase, the event loop has been started. In the startup phase, interest has been registered in changes
to the callback SDS. As a result, whenever the SDS is modified, a task event is queued. During each
iteration of the event loop, task events are processed by the processEvents function. A task event leads
to the task being evaluated. As a result of evaluating the task, the onShareChange callback is processed.
The onShareChange callback may produce output, which is queued for sending. The approach to sending
data in the replacement implementation is described in section 3.3. In conclusion, changes to the callback
SDS result in the onShareChange callback being processed. Note that if the same value is written to the
SDS twice, the onShareChange callback will end up being evaluated twice. Changed therefore means
"written to" in this context. It is not checked whether the value written to the SDS is actually different
because the equality check may be very expensive to perform.

This approach is deemed to be fragile as the task event it relies on is the refresh event. A refresh event
may also end up being queued for the task for different reasons. This then leads to evaluating the
onShareChange even though the SDS did not change.

The existing implementation reads the callback SDS every event loop iteration, regardless of whether the
SDS was modified. In conclusion, the onShareChange is still evaluated and processed when the SDS is
changed. Furthermore, the SDS is no longer read every event loop iteration, which may involve obsolete
reads.
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7.4.2 Retrieving and processing I/O Events

Figure 7.6: Callgraph which illustrates how I/O events are retrieved and processed.

The program starts monitoring for I/O events in the monitor phase. This means that the event loop
has been started. The getIOEvents function is called every iteration of the event loop. getIOEvents is
used to retrieve the I/O events that occurred on the file descriptors (sockets) that are being monitored.
The processIOEvents function is used to process the I/O events that were retrieved by getIOEvents.
processIdle is used to perform the operations that should happen every iteration of the event loop.

The processIOEvents function processes the following I/O Events:

• The onConnect I/O event in the context of tcplisten. In the context of tcplisten, the onCon-
nect I/O event has a different meaning depending on whether the I/O multiplexing mechanism is
reactive or proactive. The difference between reactive and proactive I/O multiplexing mechanisms
is described in section 3.2.

For IOCP (Windows), the onConnect I/O event signals that a connection request has successfully
been accepted. This is followed by initiating another asynchronous accept operation through ac-
ceptC which proactively handles the next connection request. Furthermore, data is proactively
read on the client socket that resulted from accepting the connection. As a result, the program is
able to respond to the peer sending data over the connection. Afterwards, the onConnect callback
is evaluated and processed. The onConnect callback may return output, which is queued to be
sent. The process of sending data has been described in section 3.3.

For kqueue (macOS) and epoll (Linux), The onConnect event indicates that a connection request
may be accepted. The acceptC function is used to accept the connection. After this, the onConnect
callback is evaluated. The output returned by onConnect is queued to be sent. The client socket
that resulted from accepting the connection is monitored for readability to be able to react to data
being sent over the connection.

• The onConnect I/O event in the context of tcpconnect. This event being returned means that
the connection attempt that was performed by tcpconnect succeeded. As a result, the onConnect
callback is evaluated. Furthermore, the socket will be monitored for readability on Linux and
macOS. Data is proactively read from the socket on Windows instead (see section 3.2). The
output returned by the onConnect callback is queued to be sent.

• The onData I/O event, which has a different meaning depending on whether a proactive or re-
active I/O multiplexing mechanism is used. The difference between proactive and reactive I/O
multiplexing mechanisms is described in section 3.2.

In the case of IOCP (Windows), which is a proactive mechanism, the onData I/O event occurring
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confirms that data has been read. When the onData I/O event occurs on IOCP, a preceding
asynchronous read operation has been completed. This is always the case because the onData
event is always preceded by an onConnect I/O event. This makes sense because a connection
must be established before data can be sent/retrieved. Processing the onConnect I/O event leads
to performing an asynchronous read operation on the connected socket. The completion of an
asynchronous read always results in an onData I/O event occurring. When the onData I/O event
occurs, the data from the preceding asynchronous read operation is retrieved. This is followed
by initiating another asynchronous read operation, which will lead to another onData event. As
a result, data is continuously read from the socket because the process repeats itself. There is a
small amount of time where there is no outstanding asynchronous read operation. However, this
is not a problem because the received data is buffered. If there is no space in the buffer this is
handled by the peer. After retrieving the data, the onData callback is evaluated and processed. If
the onData callback returned output, it is queued to be sent.

In practice, retrieving the data from the preceding asynchronous read operation and performing
the next read operation has been split into two functions. The reasoning for this is technical. One
buffer per file descriptor is used to store the received data for that file descriptor. Clean copies
strings that are returned to Clean by a given C function on the heap at the end of the function
call. Therefore, when data is retrieved, the data in the receive buffer of the file descriptor is copied
to Clean at the end of the function call used to retrieve the data. This is useful because the same
buffer can then be reused for the next asynchronous read operation. However, an asynchronous
read operation may also complete immediately in some circumstances in the case of using IOCP [13]
(see the Overlapped Socket I/O section). In this case, the receive buffer is immediately overwritten.
Therefore, retrieving the data from the buffer and initiating the next read operation is split. If this
were not the case, it would be possible that the the receive buffer would be overwritten by the next
read operation if the next read operation completed synchronously. Since Clean only copies the
data in the receive buffer to the heap at the end of the function call, this would lead to incorrect
data being returned. Splitting the function up makes sure that the data in the receive buffer is
retrieved/copied by Clean before the next read operation is initiated.

In the case of epoll (Linux) and kqueue (macOS), the onData I/O event indicates that data may
be read. In this case, the readC function is used to synchronously read the data in a non-blocking
manner. The readC function may detect a disconnected peer and this possibility is correctly
handled. It is possible to detect a disconnect when reading because the peer may disconnect
after the file descriptor becomes readable but before the file descriptor is actually read. If data
was successfully read, The onData callback is evaluated using the received data and the output
returned by the callback is queued to be sent.

The way the onData I/O event is processed internally is significantly different depending on whether
the used I/O multiplexing mechanism is proactive or reactive. However, the end-user does not
need to be aware of the differences. This is a consequence of the tcplisten and tcpconnect tasks
abstracting away from these internal differences.

• The onDisconnect I/O event is returned when the peer closes the connection. The event is
processed by evaluating the onDisconnect callback. The onDisconnect callback may not send
output as the connection has been closed when it evaluated. At this point, the socket file descriptor
is closed and the memory associated with the socket (e.g the receive buffer) is freed. In addition,
the onDisconnect callback is evaluated when the connection is closed locally.

The processIdle function is used to:

• Evaluate and process the onTick callback for the connected file descriptors. In the case of tcpcon-
nect and tcplisten, it is not possible to provide a onTick callback. A dummy onTick callback
is used in the case of using tcpconnect and tcplisten. However, the onTick callback is used by
the HTTP server, which is described in section 4.

• Handle the task being destroyed. In this case, the sockets associated with the task have their
onDestroy callback evaluated and processed. The onDestroy callback may return output, which
is queued to be sent. The sockets associated with the task are closed once all data that was queued
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for the socket has been sent. Of course, this is done in a best-effort manner. If the peer closes the
connection in the meantime it becomes impossible to send the queued data, for example.

• Send the data that has been queued to be sent. IPC and network I/O now share the same approach
to sending data. The approach to sending data has been described in section 3.3.

7.5 Summary

Like the existing implementation, the replacement implementation offers the tcplisten and tcpconnect
tasks for performing network I/O as an end-user. The tcplisten task is used to setup a TCP server,
listen for incoming connections and communicate with the connected clients. The tcpconnect task is
used to connect to a TCP server and communicate with it. The tcplisten and tcpconnect tasks are of
the same type as the tcplisten and tcpconnect tasks that are provided by the existing implementation.
As a result, existing programs and extensions that make use of tcpconnect and tcplisten do not have
to be altered.

For the most part, the drawbacks of the existing implementation no longer apply to the replacement
implementation. This means that, in the replacement implementation of network I/O:

• The onShareChange is no longer evaluated every event loop iteration. Generally, the onShareChange
callback is only evaluated when the SDS changes but the approach that is taken is fragile (see chap-
ter 12). This especially increases the scalability of the tcplisten task.

• Data is sent and read in a non-blocking manner. As a result, the iTasks program may no longer block
when sending or reading data. This is required for horizontally scaling iTasks web applications.
Horizontally scaling iTasks web applications is a future goal of the iTasks project.

• Establishing a connection to a TCP server using the tcpconnect task is now done in a non-blocking
manner. This means that the iTasks program will no longer block when establishing a connection
to a TCP server. This is required for being able to horizontally scale iTasks applications.

• The replacement I/O multiplexing mechanisms are used instead of select. This allows to provide
IPC and network I/O using the same approach.
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Chapter 8

Existing Implementation - IPC

iTasks provides a task that allows to execute an external process. This allows to execute any executable
through an iTasks program. Such executables may produce output data and process input data.

For example, consider the su command. The su command allows a user to perform commands with
root (superuser) privileges. The location of the executable for the su command is normally located in
/bin/su on Linux systems. If the su command/executable is used without parameters, it takes input
(the password of the superuser account) and may return output. For instance, if the authentication
attempt failed produces output indicating that the authentication failed.

An iTasks program may be interested in providing input to executables that are executed as an external
process. Similarly, iTasks programs may also be able to read output from the program that is executed as
an external process. This involves inter-process communication. This chapter discusses how the existing
implementation provides inter-process communication.

The task that allows the end-user to execute an external process and communicate with it is called
externalProcess. An overview of how the externalProcess allows the end-user to execute external
processes and interact with these processes is included below.

When the externalProcess task is executed, the currently running Clean process is duplicated using
fork to create a new Clean process. After this, exec is used to execute the external process the user
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wishes to run on this new process, the duplicated Clean process is thereby replaced. The new process,
on which the external process is executed, is called the child process since it was created by the parent
process. The standard input channel of the external process is called stdin. Likewise, the standard
output and standard error output channels of the external process are called stdout and stderr. The
data written to the stdout/stderr channels of the child process is sent to the parent process. The parent
process then writes this data to the SDS (Shared Data Source) that stores the stdout/stderr data. SDSs
provide a means to read and write shared data. A SDS is used to abstract from various means for storing
data, such as a file, shared memory or a database. The end-user may then read the data in this SDS
and process it.

The end-user may write data to the SDS for stdin. This SDS is then read by the parent process. The
data that is stored within the SDS for stdin is written to the stdin of the child process. This is followed
by the contents of the SDS for stdin being emptied.

Communication between the child and parent process is provided either through pipes or through a
pseudoterminal, depending on the choice of the end-user. Pseudoterminals are only supported on the
Linux/macOS platforms.

The externalProcess task has the following type:

externa lProce s s : : Timespec Fi lePath [ Str ing ] (? Fi lePath ) Int
(? ProcessPtyOptions ) ( Shared sds1 [ Str ing ] )
( Shared sds2 ( [ Str ing ] , [ Str ing ] ) ) -> Task Int
| RWShared sds1 & RWShared sds2

externa lProce s s p o l l I n t e r v a l executablePath parameters mbStartDir ex i t code
mbPtyOptions s td i n sd s s tdoute r r sd s = . . .

externalProcess takes the following arguments:

• A poll interval, which determines how often data is read from and written to the external process.

• The path of the executable of the process to be executed.

• The command line arguments (parameters) that should be provided to the executable.

• The starting directory (useful if providing a relative path for executablePath)

• The exitcode to send when the task is destroyed.

• Possibly pseudoterminal options. If this is ?None, pipes are used to provide the inter-process
communication. If this is ?Just then a pseudoterminal will be used to provide inter-process com-
munication. Pseudoterminals are not supported on Windows. The choice of using a pseudoterminal
or pipes needs to be accounted for within the internal implementation. It also has impact on the
end-user. For example, it is not possible to execute certain processes externally using pipes. For
example, the su command may only be communicated with through a (pseudo)terminal. Pipes
allow to separate the stdout and stderr output of the external process while the pseudoterminal
does not.

When using a pty, the stdout and stderr output of the external process is not properly separated.
This is considered a bug and it is described in more detail in section 8.1. Furthermore, stdout is
fully buffered when using pipes. In the case of using a pseudoterminal, stdout is line-buffered [21].
This can lead to different behavior when executing external processes. As a process terminates
the stdout buffer is automatically flushed. In the case of using pipes, it is the responsibility of the
external process to flush the stdout/stderr buffer to send data to the parent process. Otherwise, the
data that is sent to stdout/stderr by the external process might not arrive to the parent process.

• A shared data source (SDS) in which the input to be provided to the external process is stored.
This shared data source is read once every pollInterval. If there is data, it is sent to the stdin
of the process. The data that was sent is removed from the SDS afterwards.
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• A shared data source in which the output of the external process is stored. The task attempts to
read data from the external process once every pollInterval.

Below, the use of the externalProcess task is explained according to a simple example. The example
involves a Clean/iTasks program which executes an external process and provides it with input. After-
wards, it receives output from the external process. The behavior of the external process is specified
through a C program.

The C program included below is the external process that is executed. It reads two integers from stdin
and writes the sum to stdout. Note that any kind of executable may be executed as an external process.

// addtwonumbers . c : Reads two numbers from s t d i n and p r i n t s the sum to
s t dou t .

i n t main ( ) {
i n t a , b ;
s can f ( "%d" , &a ) ;
s can f ( "%d" , &b) ;
p r i n t f ( "%d\n" , a + b) ;
re turn 0 ;

}

The program included below executes the C program specified above and writes two integers to the stdin
of the external process. It reads the sum of the integers that is written to stdout by the external process.
The sum is then written to the SDS used for storing stdout and stderr.

module proces s

import iTasks
import System .Time
import Text
import StdDebug

Start w = doTasks ( onStartup proces s ) w

proces s : : Task Int
proces s = withShared [ "2\n3\n" ] \ input ->

withShared ( [ ] , [ ] ) \ outputStorage ->
externa lProce s s {Timespec | tv_sec=1 , tv_nsec=0}

"/path/to/addtwonumbers . exe" [ ] ?None 0
?None input outputStorage

>>- \ ex i t code ->
get outputStorage >>~ \( stdout , s t d e r r ) ->
t race_n ( concat stdout ) return ex i t code

externa lProce s s : : Timespec Fi lePath [ Str ing ] (? Fi lePath ) Int
(? ProcessPtyOptions ) ( Shared sds1 [ Str ing ] )
( Shared sds2 ( [ Str ing ] , [ Str ing ] ) ) -> Task Int
| RWShared sds1 & RWShared sds2

externa lProce s s p o l l I n t e r v a l executablePath parameters mbStartDir ex i t code
mbPtyOptions s td i n sd s s tdoute r r sd s = . . .

The process task involves executing the C program included above, providing two numbers as input. An
enter keypress is encoded as a newline character. In this example program, pipes are used as a means
of communication with the external process. This is a result of the pseudoterminal options argument
being ?None. The input numbers are provided to the stdin of the external process. The external process
adds the numbers and prints the sum of the two numbers to stdout. This output is read from the pipe
and written to the stdout/stderr SDS. When the program terminates, the output that is stored in the
stdout/stderr SDS is retrieved and shown to the user.
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8.1 Internal implementation

This section describes the internal implementation of the externalProcess task. This description is
based on the example program included above.

Figure 8.1: Overview of the internal implementation of externalProcess.

The internal implementation of the example program included above can be summarized as follows:

1. The doTasks function specified in Start ends up evaluating the serve function. The Start function
is the entry point of any iTasks/Clean program.

2. The serve function executes the external process, this process is different depending on whether
pipes or a pty is used as a means of communication. The runProcessPty function executes the
external process if the end-user specified to use a pty. The runProcessIO is used if the end-user
specified to use pipes. The input and output channels of the external process are redirected to
pipes/a pty. The externalProcess task has access to the pipes/pty.

3. After executing the external process, the serve functions starts the event loop.

4. The loop function evaluates the processEvents function every event loop iteration.

5. The processEvents function evaluates the externalProcess task every poll interval.

6. The externalProcess task reads the output printed by the external process through readPipeNon-
Blocking. If there was any output, it is written to the SDS which is used to the store the output.
When using a pty, the data written to stdout and stderr is not properly separated. This is considered
to be a bug. The data may end up in stdout/stderr based on timing. The internal implementation
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performs two non-blocking reads in succession on the same file descriptor when using a pty. The
data from the first non blocking read is written to the stdout part of the SDS. The data from the
second non blocking read is written to the stderr part of the SDS. In case of using pipes, stdout
and stderr are redirected to two different file descriptors so the problem does not occur in this case.

7. Afterwards, it is checked whether the external process terminated. If the external process termi-
nated, the task returns the exitcode of the external process. In this case, the externalProcess
task is finished and the externalProcess task is no longer periodically evaluated.

8. The externalProcess task proceeds by reading the input which is stored in the stdin SDS. The
contents of the SDS is written to the stdin of the external process using writePipeNoErrorOn-
BrokenPipe. Afterwards, the input stored in the SDS is cleared as it has been sent. The data is
written in a blocking manner. A goal for the replacement implementation is to implement all I/O
operations in a non-blocking manner.

8.2 Summary

To summarize, iTasks allows to execute an external process. An external process can be seen as any
executable computer program. iTasks allows to provide input to the external process and process the
output that is produced by the external process. Providing input to the external process and reading
the output of the external process happens through IPC (inter-process communication). The existing
IPC implementation relies on a time-based polling mechanism. The output of the external process is
periodically read. Likewise, input to be provided to the external process is periodically sent. This is a
different approach than the I/O multiplexing approach taken by the network I/O implementation. As a
result of taking this approach, the program attempts to read and send data even though it may not be
possible to read or write data.

As a result of examining the existing implementation, the following points of improvement were identified:

• IPC should be provided through a concept that is based on I/O multiplexing as well. This results
in providing IPC and network I/O through the same concept. This increases the consistency and
maintainability of the implementation and avoids attempting to read or send data when it is not
possible to do so.

• Pseudoterminals do not allow to separate stderr and stdout output. The output SDS of the
externalProcess task has a separate storage for stdout and stderr data. Currently, the output
of the external process is written to the stdout and stderr storage based on timing when using a
pseudoterminal. It was decided that it would make more sense to store all of the output data in
the stdout storage when using a pseudoterminal. In the existing implementation, the output will
most likely all end up in the stdout storage but this is not guaranteed. This is considered to be a
problem.

• Writing the input to the external process is done in a blocking manner. A general goal of the thesis
is to implement all I/O operations in a non-blocking manner.

• The network I/O tasks make use of a callback record for sending input and receiving output. The
externalProcess task makes use of SDSs. It was decided to add an IPC task that makes use of a
callback record as well so that all the I/O tasks make use of a consistent approach to sending and
receiving data. The current externalProcess task should be re-implemented as well for backwards
compatibility.
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Chapter 9

Replacement Implementation - IPC

iTasks provides a means to execute an external process. An external process can be seen as any kind of
executable computer program. External processes have I/O channels (stdin, stdout and stderr). iTasks
allows to interact with these channels through IPC (inter-process communication). This chapter discusses
how IPC is provided in the replacement implementation. The preceding chapter describes how IPC is
provided in the existing implementation. A point of improvement of the existing implementation is that
IPC and network I/O handle interaction through a different approach. The network I/O functionality
makes use of callback records while the IPC functionality makes use of SDSs (Shared Data Sources). The
replacement implementation introduces a new task called externalProcessHandlers. This task provides
IPC through a callback record as well. This chapter first introduces how IPC is provided to the end-user
in the replacement implementation. This includes an introduction of the externalProcessHandlers
task. This is followed by an explanation of the internal implementation of IPC in the replacement
implementation.

9.1 Providing IPC to the end-user

In the replacement implementation, IPC is provided to the end-users through the externalProcess and
externalProcessHandlers tasks. These tasks allow executing and communicating with an external
process through an iTasks program. The end-user may provide data to the stdin of the external process
through a pipe/pty. The stdout and stderr output of the external process is redirected to pipes or
a pseudoterminal. As a consequence, whenever an external process writes to stdout, this output is
redirected to the pipe/pseudoterminal. The iTasks program may then read the pipes or pseudoterminal
to read the stdout and stderr output of the external process. This allows the iTasks program to provide
the output of the external process to the end-user. To summarize the above, it is possible for an
iTasks program to communicate with an external process. The figure below provides an overview of this
communication. The parent process is the iTasks program which is being executed. The child process
is the external process. The external process (child process) is created by the iTasks program (parent
process).
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Figure 9.1: Communication between an external process and the iTasks program.

When the externalProcessHandlers or externalProcess task is evaluated, the currently running
Clean process is duplicated using fork. The fork function duplicates the currently running Clean
process to create a child process. This is necessary to obtain a process on which the external process
may be executed. The Clean process which is used to create the child process is called the parent
process. The parent process continues execution of the Clean/iTasks program. The child process is used
to execute the external process.

This means that the executable which the end-user wishes to execute (for example, /bin/ls) is executed
on the child process. The child process is replaced for this external process using the exec function.
exec leads to the duplicate Clean process being replaced for the external process itself. The end-user
provides may provide input to the external process through the parent process. Likewise, the end-user
may process output from the external process through the parent process. The parent process and the
child process (the external process) communicate through pipes/a pseudoterminal.

Compared to the existing implementation, the replacement implementation may provide IPC to the
end-user in a different manner. externalProcess is the task that is used to provide IPC in the existing
implementation. Within the replacement implementation, this task has been split into two separate
tasks. Namely, externalProcess and externalProcessHandlers.

The externalProcess task provides IPC to the end-users in the same way as the existing implementation.
Chapter 8 describes how this task provides IPC to the end-user. Nonetheless, the internal implementation
of the externalProcess task has been re-implemented such that it makes use of the I/O multiplexing
concept instead of the time-based solution that is used by the existing implementation. Furthermore,
the I/O operations that are performed by externalProcess are implemented in a non-blocking manner.

externalProcessHandlers has a different type and provides IPC to the end-user in a different way than
externalProcess. It involves a callback record which is similar to the callback record provided to
tcpconnect and tcplisten. These are the tasks which provide network I/O to the end-users.

The reasoning for adding the externalProcessHandlers task is to make the I/O Tasks (tcplisten,
tcpconnect and externalProcessHandlers) more uniform. The externalProcess task is provided for
backwards compatibility.

The overview included below illustrates the options the end-user has when using externalProcess and
externalProcessHandlers.
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The externalProcessHandlers task provides a different way of interacting with an external process.
The overview included below illustrates how externalProcessHandlers provides this interaction.

externalProcessHandlers is provided a SDS for sending data to the stdin of the external process at
any point in time. This SDS is read by the parent process and the data contained within the SDS is sent
to the stdin of the child process. The data written to stdout/stderr by the external process is sent over to
the parent process. This is done by using either pipes or a pseudoterminal as a means of communication.
externalProcessHandlers is provided a callback record which is used to react to events occurring when
interacting with the external process. With the exception of the onExit callback, the callbacks may
produce output which is then sent to the stdin of the child process. This allows a Clean program to
communicate with an external process.

The externalProcessHandlers task has the following type:

externa lProcessHandlers : : Fi lePath [ Str ing ]
(? Fi lePath ) Int (? ProcessPtyOptions )
( Shared sd s in [ Str ing ] ) ( sdshand ler s ( ) r w)
( Externa lProces shand lers l r w) -> Task Int
| RWShared sd s in & RWShared sdshand ler s
| iTask l & iTask r & iTask w

externa lProcessHandlers executablePath parameters mbStartDir ex i t code
mbPtyOptions s td i n sd s sdshand ler s handlers = . . .

externalProcessHandlers takes the following arguments:

• The path of the executable of the process to be executed.

• The command line arguments (parameters) that should be provided to the executable.

• The starting directory (useful if providing a relative path for executablePath)

• The exitcode to send when the task is destroyed.
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• Possibly pseudoterminal options. If this is ?None, pipes are used to provide the inter-process
communication. If this is ?Just then a pseudoterminal will be used to provide inter-process com-
munication. Pseudoterminals are not supported on Windows. The choice of using a pseudoterminal
or pipes needs to be accounted for within the internal implementation. It also has impact on the
end-user. For example, it is not possible to execute certain processes externally using pipes. For
example, the su command may only be executed through a (pseudo)terminal. Pipes allow to
separate the stdout and stderr output of the external process while the pseudoterminal does not.

• A shared data source (SDS) in which the input to be provided to the external process is stored.

• A SDS which is used to provide custom arguments to the callback functions.

• A callback record that allows the user to define what should happen which certain events occur
(e.g: data is received from the external process, the external process exists, ...). The callback record
has the following type:

: : ExternalProcessHandlers l r w =
{ onStartup : : ( r -> (?w , [Output ] , Close ) )
, onOutData : : (Data r -> (?w , [Output ] , Close ) )
, onErrData : : (Data r -> (?w , [Output ] , Close ) )
, onShareChange : : ( r -> (?w , [Output ] , Close ) )
, onExit : : (ExitCode r -> (?w ) )
}
: : ExitCode = ExitCode Int
: : Output :== Str ing
: : Data :== Str ing
: : Close :== Bool

The r and w type variables correspond to the read and write types of the callback SDS that is provided
to the
externalProcessHandlers task. All callbacks are thus provided the read value of the SDS to access its
contents and optionally return a write value to write back to the SDS.

An example of the use of the externalProcessHandlers task is given below. A simple C program is
executed to serve as an external process. The C program reads two integers from stdin and prints the
sum to stdout. The C program is included below.

// addtwonumbers . c : Reads two numbers from s t d i n and p r i n t s the sum to
s t dou t .

i n t main ( ) {
i n t a , b ;
s can f ( "%d" , &a ) ;
s can f ( "%d" , &b) ;
p r i n t f ( "%d\n" , a + b) ;
re turn 0 ;

}

An iTasks program which executes the C program above is included below. It provides two numbers
as stdin to the external process. The external process then writes the sum of the numbers to stdout.
The stdout of the external process is redirected to a pipe. The iTasks program reads from this pipe to
obtain the sum and prints it to the console. This is done by using the trace_n function in the provided
onOutData callback.

module proces s

import iTasks
import StdDebug
import System . Process
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Start w = doTasks ( onStartup proces s ) w

handlersOutStartup : : ExternalProcessHandlers ( ) ( ) ( )
handlersOutStartup =

{ExternalProcessHandlers |
onStartup = \ r -> ( ?None , [ "2\n3\n" ] , Fal se )

, onOutData = \sum r -> t race_n sum ( ?None , [ ] , Fal se )
, onErrData = \data r -> ( ?None , [ ] , Fal se )
, onShareChange = \ r -> ( ?None , [ ] , Fal se )
, onExit = \ ex i t code r -> ?None
}

sdshand ler s : : SDSSource ( ) ( ) ( )
sdshand ler s = nul lShare

proces s : : Task Int
proces s = withShared [ ] \ sd s in ->

externa lProcessHandlers "/path/to/addtwonumbers" [ ] ?None 0 ?None
sd s in sdshand ler s handlersOutStartup

externa lProcessHandlers : : Fi lePath [ Str ing ]
(? Fi lePath ) Int (? ProcessPtyOptions )
( Shared sd s in [ Str ing ] ) ( sdshand ler s ( ) r w)
( Externa lProces shand lers l r w) -> Task Int
| RWShared sd s in & RWShared sdshand ler s
| iTask l & iTask r & iTask w

externa lProcessHandlers executablePath parameters mbStartDir ex i t code
mbPtyOptions s td i n sd s sdshand ler s handlers = . . .

The program included above makes use of the externalProcessHandlers task to execute the addtwon-
umbers program. The Start function makes sure the process task is executed on startup. The process
tasks creates a SDS in which input for the stdin of the externalProcess may be stored and evaluates
externalProcessHandlers.

The numbers that the external process tries to read from stdin using scanf are sent once the external
process has been started, this is defined through the handlersOutStartup callback record. This program
makes use of pipes instead of the pseudoterminal to communicate with the external process. This is the
case because ?None is provided as the argument for ?ProcessPtyOptions. Note that the end-user may
have also provided the numbers to the share for the stdin like so:
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proces s : : Task Int
proces s = withShared [ "2\n3\n" ] \ sd s in ->

externa lProcessHandlers "/path/to/addtwonumbers" [ ] ?None 0 ?None
sd s in sdshand ler s handlersNoOutput

In this case, the onStartup callback that is defined by the end-user would not have to return output.

9.2 Internal implementation - Overview

The internal implementations of the externalProcess and externalProcessHandlers tasks are quite
similar. Therefore, it suffices to use a single overview. The differences between externalProcess and
externalProcessHandlers are made explicit as the overview is explained. An overview of the internal
implementations of the externalProcess and externalProcessHandlers tasks is included below.

Figure 9.2: Complete overview of the internal implementation of the externalProcess and external-
ProcessHandlers tasks.

The callgraph above provides a somewhat daunting overview of the internal implementation of IPC.
However, the callgraph can be divided into two phases which both perform various tasks. The phases
are named the startup phase and the monitor phase. Individually, the tasks that are performed by
both phases are relatively small and understandable. Combined together, they perform the relatively
complicated task of providing IPC to the end-user. The phases are described separately for clarity. During
the startup phase, the external process is started and the file descriptors that are used to communicate
with the external process are monitored. Furthermore, the SDSs involved with the task are monitored.
During the monitor phase, the external process is monitored for events and the events that occur for the
external process are processed.

9.3 Internal implementation - Startup phase

The first phase is named the startup phase. The startup phase aims at performing several tasks sequen-
tially:

1. Creating pipes/a pty such that the stdin/stdout and stderr of the external process may be redirected
to the created pipes/pty.
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2. Monitoring the created pipes/pty using the I/O multiplexing mechanism.

3. Redirecting the stdout/stderr/stdin of the external process to the monitored pipes/pty.

4. Executing the external process.

5. Registering interest in changes to the SDS that is used to store data that is to be sent to stdin.

6. When using the externalProcessHandlers task, registering interest in changes to the callback
SDS. The externalProcessHandlers task suffers from the same problem as the network I/O tasks
in regards to monitoring this SDS. This means that the onShareChange callback may be evaluated
more often than is necessary (see chapter 12).

The callgraph for the startup phase is included below, note that this call graph is a section of the complete
overview included above.

Figure 9.3: Overview of the startup phase of the internal implementation

The following steps are performed during the startup phase:

1. The doTasks function calls the serve function. The serve function leads to starting the exter-
nal process. This process has been simplified in the above overview. runProcessIO is used to
start and monitor the external process when pipes are used as a communication channel. runPro-
cessPty is used to start and monitor the external process when a pty (pseudoterminal) is used as
a communication channel.

2. runProcessIO first creates the pipes that will be used to communicate with the external pro-
cess. Likewise, runProcessPty first creates a pty to communicate with the external process. The
pipes/pty are then monitored by the I/O multiplexing mechanism. Afterwards, runProcessIO and
runProcessPty duplicate the currently running Clean process (the parent process) using fork to
create a new process. The newly created process, on which the external process will be executed,
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is called the child process. After this, the stdout/stderr/stdin channels of the child process are
redirected to the created pipes/pty. This is followed by the duplicate child process being replaced
for the external process using exec. As a result, the stdout/stderr/stdin of the external process are
redirected to pipes or a pty. The parent process has access to the created pipes/pty. The pipes/pty
may then be used to communicate with the external process. Furthermore, the pipes/pty used to
communicate with the external process are monitored by the I/O multiplexing mechanism.

Note that using a pseudoterminal is not supported on Windows. When pipes are used; stdin,
stdout and stderr are redirected to separate file descriptors (pipes). When a pty is used; stdin,
stdout and stderr are redirected to a single file descriptor (pty). This is also the case in the existing
implementation.

When using a pseudoterminal, data written to both stdout and stderr is treated as if it were all
stdout. This is a result of a single file descriptor being used. It is not possible to separate stdout
and stderr data when using a pseudoterminal. This is inherent to using pseudoterminals as a means
of communication.

This characteristic of pseudoterminals is dealt with differently in the existing implementation. In
this case output may be written to the stdout SDS or stderr SDS based on timing. The existing
implementation performs two non-blocking reads on the file descriptor in succession. The data from
the first read is written to the stdout SDS. The data from the second read is written to the stderr
SDS. This means that usually all data will end up in the stdout SDS. However, it is possible that
some might end up in the stderr SDS. This can happen regardless of whether it is stdout or stderr
data. This is a result of stdout/stderr not being distinguishable when using a pseudoterminal. The
approach taken by the replacement implementation is preferable as it is always clear where the
data ends up. When using pipes, the existing implementation does separate stderr/stdout data.

3. The SDS that is used for providing stdin to the external process is monitored for changes.

4. The onStartup callback is evaluated in case the externalProcessHandlers task is used.

5. The callback SDS is monitored for changes in case of the externalProcessHandlers task is used.

Upon completion of the startup phase, the monitor phase commences. This is done by the loop function
being evaluated, starting the event loop.

9.4 Internal Implementation - Monitor phase

The second phase is named the monitor phase. During the monitor phase, the following tasks are
performed:

• The stdout and stderr of the external process are monitored for output. This is a result of monitor-
ing the pty/pipes that are used to communicate with the external process using the I/O multiplexing
mechanism.

When using externalProcess, the stderr and stdout output of the external process is written
to a SDS. This SDS is provided to the externalProcess task by the end-user. When using a
pseudoterminal, all output is written to the stdout storage of the SDS.

If externalProcessHandlers is used, the stderr and stdout output is provided to the onErrData
and onOutData callbacks. These callbacks are evaluated when output is received. When using
pseudoterminals, all output is processed through the onOutData callback. This is a consequence of
not being able to process stderr and stdout separately if a pseudoterminal is used.

• The SDS for stdin provided to the externalProcess task is monitored for changes. If the SDS
changes, the data it contains is retrieved. Afterwards, the data it contains is written to the stdin
of the external process using a pipe/pty. The data stored within the SDS is then cleared.

• When using the externalProcessHandlers task, the callback SDS is monitored for changes. If
the callback SDS changes, the onShareChange callback is evaluated and the return values are
processed.
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• The external process is monitored for termination. If the external process terminated, the task
returns a stable value.

The monitor phase ends if the external process terminates or a callback returns that the external process
should be terminated (externalProcessHandlers).

An overview of the monitor phase is included below:

Figure 9.4: Overview of the monitor phase of the internal implementation of the externalProcess task
.

Notice how the implementation of IPC is very similar to the implementation of the HTTP server and
network I/O in the replacement implementation. This is a result of IPC now being provided to the
I/O multiplexing concept as well. On a lower level than is shown by the overview, this allows to reuse
a significant amount of code between the network I/O and IPC implementation. For example, Linux
and macOS provide a generic way to send and receive data to file descriptors (pipes and sockets). As a
result, sending and receiving data has a single implementation on these platforms, regardless of whether
a pipe or socket is used. Windows unfortunately requires using different functions, but the approach to
reading/sending data to a pipe or socket is the same as well for Windows. In the existing implementation,
this is not the case.

In the monitor phase, the startup phase has finished. As a result, the program is in a state where

• The event loop has been started.

• The external process has been started.

• The stdout/stderr/stdin channels of the external process have been redirected to pipes/a pty. The
I/O multiplexing mechanism monitors the pipes/the pty.

• The SDS for stdin is monitored for changes.
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• If the externalProcessHandlers task is used, the callback SDS that is provided to externalPro-
cessHandlers is monitored for changes.

As stated, several tasks are performed during the monitor phase:

• The stdout and stderr of the external process are monitored for output. This is done using the I/O
multiplexing mechanism. The output is then processed depending on whether the
externalProcessHandlers or externalProcess task is used. In either case, the end-user can
retrieve the data sent to stdout/stderr by the external process.

• The SDS for stdin provided to the externalProcess or externalProcessHandlers task is mon-
itored for changes. Whenever the SDS changes, the data content is read and sent to the stdin of
the external process. The SDS for stdin is then emptied.

• if the externalProcessHandlers task is used, the callback SDS that is provided to the
externalProcessHandlers task is monitored for changes. If the SDS changes, the onShareChange
callback is evaluated and processed.

• The external process is monitored for termination. If the external process terminated, the task
returns a stable value. This can be useful when the end-user wants to use a sequential iTasks
combinator to react to the external process terminating. For example, the end-user could specify
a program such as:

proces s = withShared [ ] \ s td in ->
withShared [ ] \ s tdou t e r r ->
externa lProce s s . . . s td in s tdou t e r r >>- \ ex i t code ->
get s tdou t e r r >>~ \( stdout , s t d e r r ) -> . . .

In this case the >>- combinator is used to react to the externalProcess returning a stable value.
This only happens when the externalProcess terminates. In this example, the stdout and stderr of
the external process is read after the external process terminates.

The internal implementation of each of these tasks is discussed separately for clarity.

9.4.1 Monitoring the SDSs

When externalProcess is used, the SDS for storing stdin that is to be sent to the external process is
monitored through the event loop.

When externalProcessHandlers is used, in addition to monitoring the SDS for stdin, the callback SDS
is monitored for changes as well.

The overview below shows the relevant part of the call graph for monitoring the SDSs that are monitored
by the externalProcess and externalProcessHandlers tasks:
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Figure 9.5: Monitoring the SDS for stdin.

As the figure illustrates, if the content of the SDS for stdin is changed, the content of the SDS is queued
for sending. The SDS is emptied afterwards. Similarly, when the value of the callback SDS
(externalProcessHandlers) is modified, the onShareChange callback is evaluated. The onShareChange
callback may produce output which is queued for sending. The approach to sending data in the replace-
ment implementation is explained in more detail in section 3.3. The data that is queued is sent to the
stdin of the external process, provided that the external process has not terminated.

9.4.2 Monitoring the output of the external process

Following the startup phase, the file descriptors involved in communication with the I/O multiplexing
mechanism are monitored for readability. The aim is to provide the output of the external process
to the end-user. The output is provided to the end-user through user-defined callbacks or a SDS.
The externalProcess task makes use of a SDS to process the output of the external process. The
externalProcessHandlers task makes use of callbacks to process the output of the external process.

The figure included below illustrates the relevant part of the call graph.
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Figure 9.6: Monitoring the external process for output.

getIOEvents returning a readability event indicates that data can be read (Linux, macOS) or has been
read (Windows). In either case, the data ends up being processed by processIOEvents. processIO-
Events reads the output of the external process. Afterwards, processIOEvents proceeds by processing
the output of the external process. This is done differently depending on whether externalProcess or
externalProcessHandlers is used.

externalProcess stores the output data in a SDS. As stated, if using a pseudoterminal, the stdout and
stderr output will both end up being stored as stdout in the SDS. This is a result of it not being possible
to separate stdout and stderr when using a pseudoterminal. When using pipes, stderr and stdout is
correctly separated within the SDS.

externalProcessHandlers evaluates a callback in response to output being received. When using a
pseudoterminal, the onOutData callback is evaluated, the received data is provided to the callback.
When using pipes, the onOutData or onErrData callback is evaluated, depending on whether the output
was written to stderr or stdout by the external process. If a pseudoterminal is used, output being received
will always lead to onOutData being evaluated. The onOutData and onErrData callbacks may produce
output, which is queued to be sent. The output is sent to the stdin of the external process at a later
point in time. The process of sending data in the replacement implementation is explained in section
3.3.

9.4.3 Monitoring for termination

The following illustration shows how processes are monitored for termination in the replacement imple-
mentation:
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Figure 9.7: Monitoring external processes for termination.

Every iteration of the event loop, the external processes that are being executed are monitored for
termination. This is done through the checkProcesses function. If a process terminated, an event is
queued for the externalProcess/externalProcessHandlers. This event is processed by returning a
stable value.

9.5 Summary

To summarize, the replacement implementation provides two tasks for executing an external process and
communicating with it through IPC. The tasks allow to provide input to the external process that was
executed and processing the output of the external process. The externalProcess task allows to com-
municate with an external process in the same manner as the externalProcess task that is provided in
the existing implementation. The externalProcessHandlers is a new task. externalProcessHandlers
allows to communicate with the external process using a callback record. This allows to communicate
with the external process in a style that is consistent with how the network I/O functionality provides
communication to the end-user.

The replacement implementation improves on the points of improvement that were identified for the
existing IPC implementation. Concretely, this means that:

• IPC is now provided through the I/O multiplexing concept. This is an improvement on the time-
based polling approach that is taken by the existing implementation. As a result, the monitor
phase of the HTTP server, the network I/O tasks and IPC are now very similar. This increases the
consistency and maintainability of the iTasks I/O functionality. Furthermore, it allows for code
reuse.

• When using a pseudoterminal, all output of the external process is processed as stdout output. This
is a consequence of not being able to separate stdout and stderr output when using a pseudotermi-
nal. The existing implementation has a bug which would make it possible for data to end up being
processed as stderr or stdout based on timing. As a result the behavior of the externalProcess

66



task is the existing implementation is not deterministic. The behavior of the externalProcess
task is deterministic in the replacement implementation.

• Writing the output to the external process is now done using a non-blocking approach. Performing
I/O operations in a non-blocking manner is a general goal of the thesis. This is a necessary
step for being able to horizontally scale iTasks applications. Furthermore, this makes sure the
iTasks program will not block while sending data. If the iTasks program blocks it may become
(temporarily) unresponsive.

• The replacement implementation introduces the externalProcessHandlers task, which allows to
communicate with an external process using a callback record. As a result, there is an option for
using IPC in a similar style as the network I/O tasks (tcplisten and tcpconnect).
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Chapter 10

Benchmarking the iTasks HTTP Server

Most iTasks applications rely on the iTasks HTTP server as iTasks is a framework for building web ap-
plications. As a consequence, increasing the performance and scalability of the HTTP server is beneficial
for most iTasks applications. The HTTP server is affected by replacing the I/O multiplexing mechanism
and other changes to the internal implementation. As a result, it is interesting to investigate how the
replacement implementation scales and performs compared to the existing implementation.

In the problem description it is stated that replacing select for epoll, kqueue and IOCP is not expected
to result in significant performance benefits. The reasoning behind this statement is that the performance
benefits only become significant as thousands of file descriptors are being monitored [9]. However, it was
not merely the I/O multiplexing mechanism that was changed. For example, the SDSs of connected
clients are read significantly less often thanks to the new approach to the onShareChange and onTick
callbacks. These changes and other changes may also have resulted in performance benefits or drawbacks.
As a result, benchmarking the HTTP server is considered to be worthwhile.

The iTasks HTTP server was benchmarked using two methods for testing the scalability of the server.
The first method makes use of a load testing tool that is called hey [16]. hey can be used to send a
given number of HTTP requests to a server and measures the time it takes for a response to arrive. It
provides various statistics on the time it takes to send requests and receive responses.

To explicitly test the latency of task events, which are sent using the WebSocket protocol, the HTTP
server was benchmarked using javascript. This was done because iTasks task events are sent and handled
by the browser through javascript. Task events are events that result from user input of clients that
interact with iTasks web applications. Task events are described in more detail in chapter 4.

This chapter first discusses the measurements that were obtained by performing the benchmark and
the hardware that was used to obtain the measurements. The remainder of the chapter contains an
explanation of how the benchmark results may be reproduced.

10.1 Hardware specification

This section lists the hardware that was used to host the HTTP server when performing the benchmark
for each operating system that was used. The used hardware is specified to increase the reproducibility
of the actual results. Nonetheless, the results of the benchmark should show a similar trend regardless
of the hardware that is used.

Linux

Component Specification
CPU Intel

i7-5600U (4) @ 3,2GHz
RAM 12GB DDR3L-SDRAM
Operating system Linux, kernel version: 5.12.11

68



MacOS

Component Specification
CPU Intel

i5-5287U (4) @ 2,9GHz
RAM 8GB
Operating system macOS Big Sur 11.4

Windows

Component Specification
CPU Intel

i5-5300U (4) @ 2,3GHz
RAM 8GB DDR3L-SDRAM
Operating system Windows 10 Pro version: 20H2

10.2 Benchmarking the HTTP server using hey

This section describes the process of benchmarking the HTTP server using hey and discusses the bench-
mark results.

Using a program to setup idle connections, a given number of idle connections to the HTTP server are
created. Afterwards, using the hey tool, 1000 measurements are performed to benchmark the HTTP
server. A measurement involves sending a request to the HTTP server and waiting for the response.
Using these measurements, hey returns various statistics that indicate the performance of the HTTP
server:

• Latency denotes the time it takes for a client to send a request and retrieve a response.

• Resp. wait denotes the time hey spent waiting for the iTasks HTTP server to return a response
after performing the request.

• Average denotes the average latency for the given number of connected clients.

• Slowest denotes the latency of the measurement which had the highest latency.

• Fastest denotes the latency of the measurement which had the lowest latency.

These statistics for given amounts of idle connections form the results of the benchmark.

On Linux, measurements were performed on a version that preceded the optimization of the onTick
callback. The optimization of the onTick callback is described in more detail in chapter 5. These
results were also included to indicate the effect that the onTick optimization had on the scalability
of the HTTP server (see figure 10.2.1). Accordingly, the measurements before optimizing the onTick
callback are labelled "pre-optimize". The measurements after optimizing the onTick callback are labelled
"post-optimize".
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10.2.1 Benchmark results for the Linux operating system
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Existing HTTP server (Linux)
Replacement HTTP Server (pre-optimize onTick)
Replacement HTTP Server (post-optimize onTick)

Existing HTTP
server
N clients Average (ms) resp. wait (avg, fast, slow) (ms) slowest (ms) fastest (ms)
1 0.3 0.2, 0.1, 2.4 2.4 0.2
250 2 1.9, 1.4, 9.1 9.9 1.5
500 3.8 3.6, 2.8, 7.6 8.3 2.9
750 5.5 5.4, 4.2, 14.1 14.9 4.3
1000 7.1 7.0, 5.4, 14.8 15.6 5.6

Replacement HTTP
server pre-optimize
N clients Average (ms) resp. wait (avg, fast, slow) (ms) slowest (ms) fastest (ms)
1 0.3 0.3, 0.2, 1.9 2.0 0.2
250 1.4 1.3, 0.9, 3.7 3.8 1.0
500 2.5 2.4, 1.6, 4.3 4.4 2.0
750 3.8 3.7, 2.8, 6.8 7.0 2.9
1000 4.9 4.8, 3.7, 6.9 7.7 3.9

Replacement HTTP
server post-optimize
N clients Average (ms) resp. wait (avg, fast, slow) (ms) slowest (ms) fastest (ms)
1 0.3 0.2, 0.1, 2.4 2.4 0.2
250 0.3 0.3, 0.2, 1.2 3.6 0.2
500 0.3 0.3, 0.2, 1.3 1.5 0.2
750 0.3 0.3, 0.2, 1.3 1.3 0.2
1000 0.3 0.3, 0.2, 1.5 1.9 0.2
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10.2.2 Benchmark results for the Windows operating system
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Existing HTTP server (Windows)
Replacement HTTP Server (Windows)

Existing HTTP
server
N clients Average (ms) resp. wait (avg, fast, slow) (ms) slowest (ms) fastest (ms)
1 0.9 0.5, 0.3, 1.6 330.8 0.5
250 3.8 3.2, 1.8, 8.4 332.2 2.0
500 4.9 4.4, 3.1, 15.0 319.2 3.3
750 6.4 5.8, 4.5, 14.6 337.6 4.7
1000 8.1 7.6, 5.9, 24.2 329.1 6.1

Replacement
HTTP server
N clients Average (ms) resp. wait (avg, fast, slow) (ms) slowest (ms) fastest (ms)
1 1.1 0.6, 0.4, 2.8 321 0.5
50 1.1 0.6, 0.4, 4.5 322 0.5
250 1.1 0.6, 0.4, 2.3 321 0.5
500 1.1 0.6, 0.4, 2.5 322 0.5
750 1.0 0.6, 0.4, 3.5 324 0.5
1000 1.1 0.7, 0.4, 2.9 325 0.5
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10.2.3 Benchmark results for the macOS operating system
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Replacement HTTP Server (macOS)

Existing HTTP
server
N clients Average (ms) resp. wait (avg, fast, slow) (ms) slowest (ms) fastest (ms)
1 0.5 0.4, 0.3, 2.9 4.8 0.3
250 2.3 2.2, 1.7, 6.7 10.1 1.8
500 4.1 4.0, 3.0, 11.9 15.2 3.1
750 6.0 5.8, 4.5, 19.4 21.2 4.6
1000 7.7 7.6, 5.9, 24.2 28.1 5.9

Replacement
HTTP server
N clients Average (ms) resp. wait (avg, fast, slow) (ms) slowest (ms) fastest (ms)
1 0.9 0.7, 0.3, 6.0 6.4 0.4
250 0.9 0.7, 0.3, 6.6 6.7 0.4
500 0.9 0.7, 0.3, 6.8 6.9 0.4
750 0.9 0.7, 0.3, 6.8 7.0 0.4
1000 0.9 0.7, 0.4, 6.2 8.3 0.4

10.2.4 Conclusion

The hey benchmark results show a significant improvement in scalability on all platforms when using the
replacement implementation. When a single file descriptor is monitored, the replacement implementation
tends to perform slightly worse or equal to the existing implementation. This should not be considered
a problem since the latency is low in this case regardless. As more clients are monitored, the latency of
the existing implementation scales somewhat linearly. The latency of the replacement implementation
remains constant as more clients are monitored on all platforms.

10.3 Benchmarking the WebSocket connection of the HTTP server

This section discusses how the WebSocket connection of the HTTP server was benchmarked. The
WebSocket connection of the iTasks HTTP Server is used to communicate task events to the HTTP
server. Javascript is used to be able to react to user input through sending task events to the HTTP
server. Some examples of user input that lead to a task event are clicking a button or entering a value in
an input field of a web application that is developed using iTasks. Javascript notifies the iTasks HTTP
server of such user input through a WebSocket connection. This is just a regular socket connection but
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it uses the WebSocket protocol instead of the HTTP protocol. iTasks notifies the browser of the client of
any changes that should be performed as a result of the user input. The required changes are processed
by the browser using javascript.

This process is described in more detail in chapter 4. Using javascript, 1000 task events were sent to
the iTasks HTTP server and statistics were collected on the response time of the HTTP server. This
measures how long it takes for javascript to be notified by the HTTP server after sending a task event.
This measurements were performed while the HTTP server was monitoring a given number of idle
connections. The idle connections are used to measure the scalability of the HTTP server.

The statistics that are measured for the WebSocket benchmark are:

• The average latency of the 1000 measurements that were performed.

• The latency of the measurement that had the highest latency.

• The latency of the measurement that had the lowest latency.

10.3.1 Benchmark results for the Linux operating system
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Existing HTTP server (Linux)
Replacement HTTP Server (Linux)

Existing HTTP server
N clients Average (ms) slowest (ms) fastest (ms)
1 2.0 7.6 0.5
250 5.2 41.3 2.5
500 6.4 77.8 4.2
750 7.0 40.5 4.5
1000 10.2 56.6 7.4

Replacement HTTP server
N clients Average (ms) slowest (ms) fastest (ms)
1 2.1 4.3 1.7
250 2.1 10.2 1.6 (not a

typo)
500 2.2 18.3 1.7
750 2.2 56.1 1.7
1000 2.2 9.0 1.7
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10.3.2 Benchmark results for the Windows operating system
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Existing HTTP server
N clients Average (ms) slowest (ms) fastest (ms)
1 2.4 11.7 1.0
250 6.1 12.7 3.6
500 9.6 17.6 5.5
750 12.2 26.5 6.3
1000 10.3 29.2 7.6

Replacement HTTP server
N clients Average (ms) slowest (ms) fastest (ms)
1 2.8 6.2 2.2
250 2.8 6.3 2.2
500 2.9 21.1 2.2
750 2.8 19.7 2.2
1000 3.0 50.5 2.3

10.3.3 Benchmark results for the macOS operating system
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Existing HTTP server
N clients Average (ms) slowest (ms) fastest (ms)
1 2.9 9.3 1.1
250 4.2 23.6 0.05
500 10.5 23.4 4.9
750 6.3 20.5 0.04
1000 6.6 27.4 0.05

Replacement HTTP server
N clients Average (ms) slowest (ms) fastest (ms)
1 4.1 21.0 0.2
250 3.7 11.4 0.05
500 4.4 13.4 0.1
750 4.4 37.1 2.6
1000 4.2 76.0 2.5

10.3.4 Conclusion

The WebSocket benchmark shows an improvement in scalability on all platforms. Compared to the
hey benchmark, the growth in latency is less stable for the existing HTTP server. Like with the hey
benchmark, the replacement implementation is slightly slower when a low number of file descriptors is
monitored. This is not considered to be a problem as the latency is relatively low in this case either way.
The instability of the existing HTTP server is certainly interesting to investigate. However, this was not
deemed to be a worthwhile investment of time since the aim of the thesis is to replace the existing HTTP
server.

10.4 Reproducing the results

10.4.1 Prerequisites for benchmarking the iTasks HTTP server

This section describes the prerequisites for benchmarking the iTasks HTTP server.

The iTasks web application used to perform the benchmarks is the BasicAPIExamples project included
in any iTasks distribution.

The iTasks distributions that were used for performing the benchmark are accessible at https://gitlab.
com/GijsAlberts/itasks-httpserver-benchmark. Furthermore, this repository includes the files that
are necessary to perform the benchmark on the operating system of choice. To perform the benchmark,
it is recommended to clone or download this repository.

It is assumed that the person performing the benchmark has access to the gcc compiler. Installation
instructions for the Windows platform are listed below (see Windows specific prerequisites). On Linux/-
macOS, it should be simple to install gcc through your package manager (brew on macOS).

Linux/macOS specific prerequisites

On macOS/Linux, there is a maximum number of file descriptors that may be opened by a process at
once. This maximum number generally is 1024 due to the limitation of select. Monitoring over 1023
file descriptors using select results in undefined behavior. However, the limit may be an even lower
number. This can result in problems when performing the benchmark. To retrieve the current maximum,
the ulimit -n command may be performed.

If ulimit -n returns a number below 1000, it is required to increase it to 1024. To increase the number
of file descriptors that may be monitored for the terminal session, the ulimit -n 1024 command may
be used to set the maximum to 1024. This command should be executed in the terminal that is used
for creating the idle connections and the terminal that is used for executing the BasicAPIExamples
executable.
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If you wish, it may be possible to perform the benchmark on more recent iTasks distributions without
extra effort on Linux and macOS.

Windows specific prerequisites

It is assumed that the person performing the benchmark downloaded MSYS2. MSYS2 can be downloaded
from: https://www.msys2.org/. It provides a terminal called mintty which may be used to perform
the commands on Windows.

The gcc compiler that is used to perform the benchmark can be installed through msys2 using the pacman
-Sy mingw-w64-x86_64-gcc command. It should then be added to the system PATH. Assuming msys2
has been installed to C:/msys64, the command to locally add gcc to the path is:
export PATH=$PATH:/c/users/msys64/mingw64/bin.

When using Windows, it is highly recommended to make use of the iTasks distribution that is provided
by the repository for benchmarking the existing implementation. This is the case because the existing
implementation has a maximum limit of monitoring 64 file descriptors by default using select. The
iTasks distribution of the existing implementation that is included in the repository comes with an
increased limit.

10.4.2 Reproducing the results that were obtained using the hey tool

This section describes the process and results of benchmarking the iTasks HTTP server implementations
using hey. The hey load testing tool may be downloaded from: https://github.com/rakyll/hey. It is
assumed that the hey load testing tool has been installed. To benchmark the HTTP server, the following
steps are performed sequentially:

1. The first step involves executing the BasicAPIExamples executable, which sets up the HTTP server.
The BasicAPIExamples project can be built using the following command on Linux/macOS:

cd iTasks - h t tp s e rv e r - benchmark/{macOS | l i nux - x86}/ c l ean - bundle -
complete -{ s e l e c t | kqueue | e p o l l}/bin

. /cpm pro j e c t . . /examples / iTasks /BasicAPIExamples . pr j bu i ld

The following command is used on Windows (the Windows clean-bundle-complete has a different
directory structure):

cd i t a s k s - h t tp s e rv e r - benchmark/windows/ c l ean - bundle - complete -{
i o cp | s e l e c t }/Examples/ iTasks

. . / . . /cpm . exe p r o j e c t BasicAPIExamples . pr j bu i ld

This will create an executable called BasicAPIExamples.exe. BasicAPIExamples.exe is located
at:

i t a s k s - h t tp s e rv e r - benchmark/{ l i nux - x86 |macOS |windows}/ c l ean -
bundle - complete -{ s e l e c t | i o cp | e p o l l | kqueue}/Examples/ iTasks

This executable should be executed. Before doing so, make sure that ulimit -n is greater than or
equal to 1024.

2. The second step involves executing a C program which is used to setup a given number of idle
connections to the server. It is recommended to use a new terminal window.

The program used for Linux/macOS is called add-idle-connections-posix.c, it is included in
the benchmark repository. The C file can be compiled using the following command.

gcc i t a s k s - h t tp s e rv e r - benchmark/add - i d l e - connec t i ons - pos ix . c -
o add - i d l e - connect i ons

The add-idle-connections executable may then be executed to setup the idle connections. The
program takes the number of idle connections to setup as an argument. An example of using the
executable to setup 250 idle connections is included below:
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. /add - i d l e - connect i ons 250

Note that if the program is made to terminate, the idle connections are closed. Therefore, do not
terminate the program before performing the measurements. Make sure that the BasicAPIExam-
ples.exe that was built in step 1 is running.

The program used forWindows is called add-idle-connections-windows.c. This file is included
in the benchmark repository. This program may be compiled using

gcc i t a s k s - h t tp s e rv e r - benchmark/add - i d l e - connec t i ons - windows . c
- o add - i d l e - connect i ons . exe - lws2_32

The number of idle connections to setup is provided as an argument to the executable. To setup
250 idle connections the following command may be used:

. /add - i d l e - connect i ons . exe 250

Note that if the program is made to terminate, the idle connections are closed. Therefore, do not
terminate the program before performing the measurements. Make sure that the BasicAPIExam-
ples.exe that was built in step 1 is running.

3. The third step involves executing the hey program using the command included below. Make sure
the program that is used to setup the idle connection has not been terminated.

hey - c 1 - n 1000 http : // l o c a l h o s t : 8080 > o u t p u t f i l e . t x t

Note that port 80 is the default port on Windows instead of port 8080. The benchmark was
executed on a localhost connection. This removes the risk of the network stability interfering
with the results. By using this command, hey sends 1000 requests to localhost with a maximum
of one connection being active at a time. hey establishes a connection, sends a request for the
index of the web server 1000 times and then disconnects. The measurements are written to a file
called outputfile.txt in this case. For obtaining the results of the hey benchmark, the command
included above was used as well. This means that the results were obtained from performing 1000
measurements.

10.4.3 Reproducing the results that were obtained through the WebSocket benchmark

This section discusses the process and results of benchmarking the WebSocket connection that is used
by the iTasks HTTP server implementations. The Websocket benchmark is performed using javascript.

Optional: disable reduction of timer precision

To get the most accurate results, it is required to (temporarily) disable the reduction of the timer
precision in the browser settings. This can be considered optional as the results should show a similar
trend either way. When obtaining the measurements that are included in this thesis, the reduction in
timer precision was disabled to maximize the accuracy of the measurements.

Having a precise timer may harm your privacy and result in security issues [17] as long as the timer
remains precise. It is highly recommended to re-enable the reduction in precision of the timer after
performing the benchmark.

Disabling the reduction in accuracy of the timer can be done using the firefox browser. For performing
the benchmark, the changes included below disable privacy features to increase the precision of the timer
that is provided by the browser.

Using firefox, visit about:config using the URL bar. To maximalize the timer precision, make sure the
following settings are set to the following values (consider using the search bar):

pr ivacy . r e s i s t F i n g e r p r i n t i n g = f a l s e
pr ivacy . r e s i s t F i n g e r p r i n t i n g . reduceTimerPrec i s ion . j i t t e r = f a l s e
pr ivacy . r e s i s t F i n g e r p r i n t i n g . reduceTimerPrec i s ion . microseconds = 0
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pr ivacy . reduceTimerPrec i s ion = f a l s e
pr ivacy . reduceTimerPrec i s ion . uncond i t i ona l = f a l s e

Again, it is highly recommended to (re-)enable the above privacy settings after performing the bench-
mark. The default value of privacy.resistFingerprinting.reduceTimerPrecision.microseconds
is 1000.

Performing the WebSocket benchmark

To benchmark the WebSocket performance of the iTasks HTTP server, the following steps are performed
sequentially:

1. The first step involves executing the BasicAPIExamples executable, which sets up the HTTP server.
The BasicAPIExamples project can be built using the following command on Linux/macOS:

cd iTasks - h t tp s e rv e r - benchmark/{ l i nux - x86 |macOS}/ c l ean - bundle -
complete -{ s e l e c t | kqueue | e p o l l}/bin

. /cpm pro j e c t . . /examples / iTasks /BasicAPIExamples . pr j bu i ld

This will create an executable called BasicAPIExamples.exe. BasicAPIExamples.exe is located
at:

i t a s k s - h t tp s e rv e r - benchmark/{ l i nux - x86 |macOS}/ c l ean - bundle -
complete -{ s e l e c t | e p o l l | kqueue}/Examples/ iTasks

Do not execute the executable yet.

The following command is used on Windows (the Windows clean-bundle-complete has a different
directory structure):

cd i t a s k s - h t tp s e rv e r - benchmark/windows/ c l ean - bundle - complete -{
i o cp | s e l e c t }/Examples/ iTasks

. . / . . /cpm . exe p r o j e c t BasicAPIExamples . pr j bu i ld

This will create an executable called BasicAPIExamples.exe. BasicAPIExamples.exe is located
at:

i t a s k s - h t tp s e rv e r - benchmark/windows/ c l ean - bundle - complete -{
s e l e c t | i o cp}/Examples/ iTasks

Do not execute the executable that was built yet.

2. The second step involves copying the itasks-core.js file that is included in the benchmark
repository to the HTTP server js directory as follows:

cp i t a s k s - h t tp s e rv e r - benchmark/ i t a s k s - core . j s i t a s k s -
h t tp s e rv e r - benchmark/{ l i nux - x86 |macOS |windows}/ c l ean - bundle
- complete -{ s e l e c t | kqueue | e p o l l | i o cp}/Examples/ iTasks /
BasicAPIExamples -www/ j s

3. The third step involves executing the BasicAPIExamples.exe that resulted from building the
project. BasicAPIExamples.exe is located at:

i t a s k s - h t tp s e rv e r - benchmark/{ l i nux - x86 |macOS |windows}/ c l ean -
bundle - complete -{ s e l e c t | i o cp | kqueue | e p o l l}/Examples/ iTasks

4. The fourth step involves executing a C program which is used to setup a given number of idle
connections to the server. It is recommended to use a new terminal window.

The program used for Linux/macOS is called add-idle-connections-posix.c, it is included in
the benchmark repository. The C file can be compiled using the following command.
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gcc i t a s k s - h t tp s e rv e r - benchmark/add - i d l e - connec t i ons - pos ix . c -
o add - i d l e - connect i ons

The add-idle-connections executable may then be executed to setup the idle connections. The
program takes the number of idle connections to setup as an argument. An example of using the
executable to setup 250 idle connections is included below:

. /add - i d l e - connect i ons 250

Note that if the program is made to terminate, the idle connections are closed. Therefore, do not
terminate the program before performing the measurements. Make sure that the BasicAPIExam-
ples.exe that was built in step 1 is running.

The program used forWindows is called add-idle-connections-windows.c. This file is included
in the benchmark repository. This program may be compiled using

gcc i t a s k s - h t tp s e rv e r - benchmark/add - i d l e - connec t i ons - windows . c
- o add - i d l e - connect i ons . exe - lws2_32

The number of idle connections to setup is provided as an argument to the executable. To setup
250 idle connections the following command may be used:

. /add - i d l e - connect i ons . exe 250

Note that if the program is made to terminate, the idle connections are closed. Therefore, do not
terminate the program before performing the measurements. Make sure that the BasicAPIExam-
ples.exe that was built in step 1 is running.

5. The fifth step involves visiting http://localhost:8080 or http://localhost:80 (Windows) us-
ing the browser. By entering a value into the login field, the benchmark will start. The results
of the benchmark are printed to the console of the browser. To access the firefox browser con-
sole, press CTRL+SHIFT+K. As the benchmark performs 1000 measurements, it may take 10 seconds
before the output is printed when benchmarking the existing implementation.
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Chapter 11

Conclusion

iTasks is a general-purpose framework for developing web applications. It is implemented in the pure
functional programming language Clean. iTasks is a platform-independent framework, which means that
iTasks applications may be executed on the Windows, macOS and Linux operating systems.

iTasks provides an HTTP server that is used to serve the web applications that are developed using iTasks.
The iTasks HTTP server relies on network I/O to communicate with the clients that connect to the server.
As a result, the applications that are developed using iTasks rely on network I/O. Furthermore, iTasks
provides functionality that allows to perform network I/O as an end-user. Essentially, this allows the end-
user to communicate over TCP using a custom communication protocol (or HTTP). To perform network
I/O, sockets are used to abstract from network I/O communication channels. There are functions which
allow the developer to:

• Create a socket.

• Establish a network connection to a peer using a socket. This happens either through accepting a
connection request (server) or performing a connection request (client).

• Receive data from a socket, this leads to receiving data that was sent over the network connection
that was established.

• Send data to a socket, this leads to sending data over the network connection that was established.

In addition, iTasks provides a means to execute an external process and communicate with it through
IPC (inter-process communication). An external process can be seen as any kind of executable computer
program. Computer programs have input and output channels. iTasks provides functionality for provid-
ing input to the external process that was executed. Likewise, iTasks provides functionality for reading
the output of the external process that was executed. The process of providing input to an external
process and reading the output of an external process involves IPC. The iTasks IPC implementation
relies on I/O to communicate with the external process. To perform IPC, iTasks redirects the input and
output channels of the external process that is executed to pipes. Pipes are used to abstract from IPC
channels. As a result, data may be sent to the input channel of an external process by writing to a pipe.
Similarly, the output of an external process may be received by reading from a pipe.

This thesis focuses on revisiting the existing network I/O and IPC implementation of iTasks. Revisiting
the existing network I/O and IPC implementation is beneficial because the existing implementation
has several drawbacks. Revisiting the existing implementation of network I/O and IPC lead to re-
implementing the aforementioned functionality. The resulting implementation is named the replacement
implementation. The replacement implementation provides solutions to the majority of the drawbacks
of the existing implementation. The main drawbacks of the existing implementation are described in
more detail below. The approach that is taken by the replacement implementation is inspired by the
libuv library, which provides asynchronous I/O for node.js [10]. The research goal of this thesis and the
preceding research internship was to figure out whether the approach that is taken by libuv could be
applied to the existing architecture of iTasks. The conclusion is that that this is possible.
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As stated, both network I/O and IPC rely on I/O. Performing I/O involves sending and receiving data.
It may not always be possible to send or receive data over a network connection (network I/O). Similarly,
it may not always be possible to receive output from an external process or send input to it (IPC). This
poses the question of how programs that rely on I/O should handle the possibility of not immediately
being able to receive or send data. There are various answers to the aforementioned question, which all
have their advantages and drawbacks. The IPC and network I/O implementations each make use of a
distinct solution for handling the possibility of not being able to receive or send data. As a consequence,
network I/O and IPC are implemented through two separate concepts in the existing implementation.

In the case of network I/O, the iTasks program makes use of the select I/O multiplexing mechanism.
The select I/O multiplexing mechanism enables a program to monitor a set of sockets. Using an
operation, the subset of sockets that may receive or write data may be retrieved from the set of sockets
that is monitored. The program may then react by reading data from sockets that have data available.
Similarly, the program may react by sending data on the sockets for which data may be sent. In the
context of the HTTP server, it is possible to retrieve the subset of connected clients for which data may
be received, for instance.

In the case of IPC, iTasks makes use of a time-based solution to monitoring the pipes involved in
communicating with external processes. This means that the program periodically attempts to read
data from the monitored pipes to receive the output of external processes. Similarly, the program
periodically attempts to send data to the monitored pipes to send input to external processes. This is
done without having the knowledge of whether it is actually possible to read or send data.

As stated, iTasks is a platform-independent framework. The network I/O functionality of iTasks makes
use of the select I/O multiplexing mechanism. The select I/O multiplexing mechanism is supported
on the Linux, macOS and Windows operating systems. Generally, I/O multiplexing mechanisms allow to
monitor both pipes and sockets. However, the Windows implementation of the select I/O multiplexing
mechanism does not allow to monitor pipes. It is assumed that this lead to implementing IPC and network
I/O according to two separate concepts in the existing implementation. However, select is not the only
I/O multiplexing mechanism in existence. The IOCP I/O multiplexing mechanism does allow monitoring
both pipes and sockets on the Windows platform. The replacement implementation makes use of IOCP
to provide IPC and network I/O through a single concept on Windows. The emphasis lies on Windows
since a drawback of the IOCP multiplexing mechanism is that it is not portable, unlike select. Linux and
macOS provide the (non-portable) epoll and kqueue I/O multiplexing mechanisms, respectively. It was
decided to replace select for kqueue on macOS and epoll on Linux in the replacement implementation
as these mechanisms scale better. select can monitor at most 1023 file descriptors at once and retrieves
events in O(n) time. The I/O multiplexing mechanisms that are used by the replacement implementation
retrieve events in O(1) time and do not have a practical limit on the number of file descriptors that may
be monitored. Like IOCP, kqueue and epoll allow to monitor both pipes and sockets as well. Thanks to
replacing the select I/O multiplexing mechanism, IPC and network I/O are provided through a single
concept in the replacement implementation. The drawback of the new approach is that the replacement
implementation internally makes use of different I/O multiplexing mechanisms, depending on the target
platform. kqueue and epoll are very similar and the epoll (Linux) implementation has essentially been
translated to a kqueue (macOS) implementation. However, the IOCP mechanism takes a significantly
different approach than the other mechanisms. This resulted in having to abstract away from the
differences between IOCP and kqueue/epoll. This was necessary as iTasks is a platform-independent
framework and the network I/O and IPC functionality should behave the same regardless of which
platform is used.

The existing network I/O and IPC implementation make use of blocking I/O operations in several cases.
To give an example, sending data happens in a blocking manner for both IPC and network I/O. At
the time of writing, iTasks programs are single threaded. This means that iTasks programs may block
while performing I/O operations. As a result of blocking while performing an I/O operation, the iTasks
program is unable to perform other operations. This is undesirable as the iTasks program is unresponsive
as long as the program blocks. In the replacement implementation, I/O operations are performed in a
non-blocking manner. This complicates the implementation of these operations but avoids the drawback
of leaving the iTasks program unresponsive while the operation blocks. Moreover, implementing I/O
operations in a non-blocking manner is required for horizontally scaling iTasks web applications. This is

81



a future aim of the iTasks project (see chapter 12).

The replacement implementation of network I/O alleviated performance bottlenecks that exist within
the existing HTTP server implementation. The implementation of the HTTP server makes use of SDSs
(Shared Data Sources) to read and write shared data. SDSs allow dealing with various data sources in
a uniform manner, abstracting away from the actual source of the data. Some examples of data sources
are shared memory, databases and files. One SDS that is used by the HTTP server makes use of shared
memory as a means of storage. Another SDS makes use of a file as a means of storage. As a result,
reading from and writing to these SDSs is relatively expensive. The performance bottlenecks of the
existing implementation are caused by SDS writes and reads that occur for every client during every
event loop iteration. The SDS reads and writes were a result of the implementation of the onTick and
onShareChange callbacks. The implementation of these callbacks was optimized, saving a significant
number of SDS reads and writes while providing the same functionality. As a consequence, it was
considered to be worthwhile to measure the effects of the optimizations that were implemented. This lead
to benchmarking the iTasks HTTP server. The benchmark involved a comparison of the performance of
the iTasks HTTP server implementations as the number of clients that connected increased. The results
of this benchmark show that the replacement implementation of the HTTP server scales significantly
better than the existing one.
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Chapter 12

Future work

This chapter provides suggestions for future work that is related to the subject of this thesis.

A future goal of the iTasks project that is related to this thesis is to be able to horizontally scale iTasks
servers. Horizontally scaling iTasks servers involves being able to use all the threads of the CPU on
which the iTasks server is hosted for serving the iTasks application. In this case, communication can
occur through IPC (inter-process communication). Furthermore, it involves being able to have several
iTasks servers form a distributed network to share the workload of an iTasks application. Communication
between servers in a distributed network can occur through network I/O. A load balancer could be used
to distribute the requests of the clients that interact with the iTasks applications over the servers involved
in the distributed network. Being able to horizontally scale is important as this would result in iTasks
applications being able to serve a larger number of simultaneous users. Not being able to do this is
expected to become an issue in the near future for using iTasks in large-scale projects.

Arjan Oortgiese researched the topic of providing iTasks applications in a distributed manner [18]. The
product of this research is interesting but a practical problem is that it is a synchronous (blocking)
implementation. Having a distributed network of iTasks servers communicate in a blocking manner is
unfeasible.

This thesis resulted in implementing all IPC and network I/O operations in a non-blocking manner. This
is a necessary step for being able to horizontally scale iTasks applications. For example, this could be
used to implement an asynchronous version of the distributed iTasks implementation that was developed
by Arjan Oortgiese.

A further point of future work is that the current implementation of the onShareChange callback is
fragile. The problem is that the implementation currently relies on refresh events. A refresh event
for a task occurs when the SDS that is monitored by the task is modified, the implementation of the
onShareChange callback relies on this. However, a refresh event may not just be caused by a SDS being
modified. As a result, the onShareChange callback may be evaluated more often than is necessary.
Essentially, this issue can be solved by doing "something" only whenever the SDS is modified and being
able to react to this by processing the onShareChange callback. Introducing a new task event is not
considered to be a good idea as this may break already existing tasks. In the existing implementation,
the onShareChange is evaluated every event loop iteration instead. This is considered to be a bug as well.
Therefore, the approach taken by the replacement implementation does not introduce a new problem.
However, this problem remains to be properly solved.
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