
Master’s Thesis
Computing Science

Developing Real Life, Task Oriented Applications for the Internet of Things

Matheus Amazonas Cabral de Andrade
September 26, 2018

Supervisor:
prof. dr. dr.h.c. ir. M.J. Plasmeijer

Daily Supervisor:
M. Lubbers MSc.

Second Reader:
dr. P.W.M. Koopman

ii

Abstract

The Internet of Things is becoming ubiquitous. A growing number of objects are being equipped
with devices that interact with its environment and exchange data via the Internet. Such devices
are not powerful enough to run iTasks (an implementation of the Task Oriented Programming
paradigm written in Clean) applications. The mTask Embedded Domain Specific Language was
created with one goal in mind: to bring Internet of Things devices and the Task Oriented Pro-
gramming paradigm together. But so far, only trivial applications were developed using mTask.
This thesis assesses whether mTask can be used to develop real-life applications. Autohouse, the
home automation application developed during the research, guided improvements in the mTask
development environment and unearthed problems yet to be resolved.

iii

iv

Acknowledgements

I would like to thank everyone that helped me directly or indirectly in this adventure. Rinus and
Mart for the supervision, weekly meetings, patience, advice and continuous feedback. Pieter for
the help during the thesis and the feedback provided on this report. My friends around the globe
that somehow overcame the distance and pushed me towards my goals. My Nijmegen friends
for the daily advice, encouragement and occasional de-stressing parties. Last but not least, I
would like to thank my family for the continuous support during these two last years. There is
no doubt that I only made this far because of you. I love you. Especially, I would like to thank
my parents for always trusting me and pointing me in the right direction.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Introduction . 1
1.2 Research Question . 2
1.3 Report Structure . 2

2 Embedded Domain Specific Languages 3
2.1 Deep Embedding . 3
2.2 Shallow Embedding . 4

2.2.1 Shallow Embedding with Type Classes . 4

3 Task Oriented Programming 7
3.1 iTasks . 7
3.2 Interaction . 8
3.3 Combinators . 9

3.3.1 Sequential Combinators . 9
3.3.2 Parallel Combinators . 9

3.4 Shared Data Sources . 10

4 The mTask EDSL 13
4.1 The Language . 13

4.1.1 Overview of the Classes . 14
4.1.2 Overview of the Views . 15

4.2 Interpreted mTask . 16
4.2.1 Motivation . 16
4.2.2 Communication Protocol . 16
4.2.3 The Client . 17
4.2.4 The Simulator . 17
4.2.5 Devices . 18

4.3 Examples . 18

5 The Application 21
5.1 Selection Criteria . 21
5.2 Home Automation . 22
5.3 Application Description . 23

vii

viii CONTENTS

5.3.1 Architecture . 23
5.3.2 Tasks . 24
5.3.3 Devices . 25
5.3.4 Sensors . 25
5.3.5 Actuators . 25

5.4 Application Analysis . 25

6 Application Development 29
6.1 Development Overview . 29

6.1.1 Application Architecture . 29
6.1.2 Using the Simulator . 30
6.1.3 Device Communication . 30
6.1.4 Device Deployment . 30

6.2 Changes to mTask . 31
6.2.1 Variables . 31
6.2.2 Peripheral Code . 32
6.2.3 New Peripherals . 34
6.2.4 Device Requirements . 34
6.2.5 Device Disconnection . 35
6.2.6 Simulator Improvements . 36

6.3 Limitations of mTask . 36
6.4 Task Migration . 37

7 Related Work 39
7.1 mTask . 39
7.2 Autohouse . 40

8 Conclusion 43
8.1 Discussion and Future Work . 43

8.1.1 mTask . 43
8.1.2 Autohouse . 44

8.2 Conclusion . 44

Bibliography 45

Glossary 47

Acronyms 49

List of Lists 51

Chapter 1

Introduction

1.1 Introduction

The Internet of Things (IoT) consists of a network of “things” (devices, computers, systems, etc.)
that interact with each other via the Internet. These components can exchange data, monitor
and manage each other. IoT is a global, growing phenomenon. According to Gartner, there
were 3.96 billion connected “things” in 2016 and by 2020, 12.863 billion devices are expected
to be connected to the Internet [10]. IoT has been used in a myriad of applications including
home automation, fitness tracking, health care, warehouse monitoring, agriculture and industry
manufacturing. IoT devices can be dedicated servers, personal computers, tablets, smartphones,
smartwatches or compact devices operated by microcontrollers. Microcontrollers are small, cheap
computers with limited resources and low power consumption commonly used to interface with
the real world. They often gather data from sensors (movement, light, temperature, etc.), act
on actuators (motors, LEDs, switches, etc.) and communicate with other devices.

Task Oriented Programming (TOP) is a new programming paradigm used to develop online,
collaborative applications. Its central concept, a task, can be used to model different types of work
performed both by users and systems. TOP provides a high level of abstraction, liberating the
programmer from the burden of technical details, such as user interfaces. The iTasks [1] system
implements TOP in the functional programming language Clean [3] as an Embedded Domain
Specific Language (EDSL). It automatically generates as many assets as possible, turning it into
a great tool for rapid prototyping. Given an iTasks program, the system automatically generates
a web application that can be accessed via a web browser. Users can access this application to
inspect and work on tasks. The system has been proved useful in many fields, including incident
response operations and navy vessels automation [16, 6].

Although iTasks applications often require user interaction, some tasks could be automated.
Examples are tasks that interact with the external world: reading room temperature, blinking
an LED, detecting movement, unlocking a door, etc. The iTasks environment could benefit from
such automation. Microcontrollers pose as great candidates to interface with the external world.
They are affordable, energy efficient and are seamlessly combined with sensors and actuators.
Unfortunately, — due to hardware limitations — microcontrollers are not suitable to run iTasks
tasks. To bridge this gap, the mTask Domain Specific Language (DSL) was created to enable
the execution of simple tasks on microcontrollers, bringing such devices to the iTasks world [14].

1

2 CHAPTER 1. INTRODUCTION

1.2 Research Question
Even though mTask was created to allow iTasks tasks to run on IoT devices, it has not been
proved capable of running real-life applications yet. The examples built during its development
were simple demonstrations and were far from real-life IoT applications. Given that, I propose
the following research question:

Is it possible to develop real-life, IoT applications using mTask? If so, how can the development
process be improved? If not, what are the challenges to solve to make it possible?

I plan to tackle the research question by example. Namely, trying to develop a real life IoT
application using mTask. The attempt to develop such an application should display mTask’s
capability to create real life applications while displaying new opportunities to improve the
development process.

The application I chose to develop tackles a popular problem in IoT: home automation. This
application would be responsible for automating simple home management tasks such as turning
the central heating system off when the room is warm, or opening up the curtains at a set time.
The proposed application requires several IoT devices equipped with sensors (temperature, light,
humidity, etc.) and actuators (LEDs, motors, relays, etc.) spread across rooms.

1.3 Report Structure
The remainder of this report is structured as follows. Chapter 2 quickly introduces DSLs and
presents different strategies to build EDSLs. Chapter 3 introduces the concept of TOP and the
iTasks system. Chapter 4 presents the mTask EDSL, which was the research focus. Chapter 5
describes the real-life application developed during research. Chapter 6 details the development
process. Chapter 8 concludes presenting insight about the development process, answering the
research question and proposing future research. Chapter 7 lists related work.

The source code for the real-life application developed during research can be accessed at
https://github.com/matheusamazonas/autohouse.

The source code of the modified version of mTask used during research can be accessed at
https://gitlab.science.ru.nl/mlubbers/mTask/tree/peripherals.

The source code of this report can be accessed at https://github.com/matheusamazonas/
masterthesis.

https://github.com/matheusamazonas/autohouse
https://gitlab.science.ru.nl/mlubbers/mTask/tree/peripherals
https://github.com/matheusamazonas/masterthesis
https://github.com/matheusamazonas/masterthesis

Chapter 2

Embedded Domain Specific
Languages

A General Purpose Language (GPL) is a computer language intended to be used in a wide range
of domains. An example is the C++ programming language, which can be used in domains that
vary from video games to web servers and systems programming. In contrast, a Domain Specific
Language (DSL) is a computer language that was designed to be used in a particular domain.
Game Maker Language, HTML, LaTeX and VHDL are examples of DSLs. These languages,
when compared to GPLs, offer a higher level of abstraction from their target domain.

A DSL can be implemented using two different strategies: standalone and embedded. Each
strategy has its advantages and disadvantages. In the former strategy, the language is built from
the ground up, which consists of developing either a compiler or an interpreter. This strategy
provides the language designer with a lot design freedom, but requires a cumbersome amount
of work. In the latter strategy, the proposed DSL is embedded in another language. Therefore,
the DSL inherits functionality from its host language. This inheritance often is desirable (e.g., a
type checker) but sometimes might be undesirable (e.g., type coercion). This strategy frees its
designer of building a new compiler.

The semantics of a Embedded Domain Specific Language (EDSL) are given by its views (also
called backends). Common views are evaluation, pretty printing, compilation, optimization and
verification. There are two main techniques for building an EDSL: deep and shallow embedding.

2.1 Deep Embedding
A deeply EDSL is represented in its host language as an Algebraic Data Type (ADT), where
language constructs are modelled as data constructs. Views are functions that take the ADT
as input and return another ADT that represents its semantics. An example of a simple deeply
EDSL and its views (pretty printing and evaluation) can be seen on Listing 2.1.

:: MyDSL = I Int
| B Bool
| Add MyDSL MyDSL
| Sub MyDSL MyDSL
| And MyDSL MyDSL
| Or MyDSL MyDSL
| Var String

3

4 CHAPTER 2. EMBEDDED DOMAIN SPECIFIC LANGUAGES

prettyPrint :: MyDSL � [String]
eval :: MyDSL � Int

Listing 2.1: A simple deeply EDSL and its views

The biggest advantage of deep embedding is that adding a view to the DSL is easy: simply
create a function that transforms the ADT. One disadvantage is that extending the DSL might
require a lot of work, since new code has to be created for every new construct in all the views.
Another disadvantage is its lack of static type safety. As seen on Listing 2.1, MyDSL allows
operations on mixed data types, such as addition on booleans and disjunction on integers.

Generalized Algebraic Data Types (GADTs) can be used to accomplish static type safety in
deeply EDSLs, but Clean does not support them [5].

2.2 Shallow Embedding
Building a shallowly EDSL consists of representing the language constructs directly as its se-
mantics. An example of a simple shallowly EDSL can be seen on Listing 2.2. In this example,
the Sem ADT contains both the evaluation (a) and the pretty printing ([String]) views.

:: Sem a = Sem (a, [String])

add :: (Sem a) (Sem a) � Sem a | + a
and :: (Sem Bool) (Sem Bool) � Sem Bool
eq :: (Sem a) (Sem a) � Sem Bool | == a
var :: String � Sem Int

Listing 2.2: A simple shallowly EDSL

One advantage of shallow over deep embedding is that adding a new language construct is
easy, given that each construct is just a function. Another advantage is that overloading can be
achieved with the use of class constraints. In addition, static type checking is obtained without
GADTs.

The biggest disadvantages of shallow embedding are based on the fact that all views are
grouped in the same ADT. First, there is no separation of concerns. Second, there is compu-
tational waste when not all views are necessary. Finally, adding a new view in the semantics
becomes increasingly burdensome. Another disadvantage of shallow embedding is that variables
still remain unchecked during compilation. Finally, since the language constructs are functions,
they can not be inspected as in deeply EDSLs.

2.2.1 Shallow Embedding with Type Classes
Type constructor classes can be used to avoid computing all the views of a shallowly EDSL [4].
A type constructor class containing the language constructs is created and each of the DSL views
should provide an instance of the class. An example of a class-based shallowly EDSL can be seen
on Listing 2.3.

:: Print a = P [String]
:: Eval a = E a

class myDSL v where
lit :: t � v t | toString t

2.2. SHALLOW EMBEDDING 5

add :: (v t) (v t) � v t | + t
and :: (v Bool) (v Bool) � v Bool
eq :: (v t) (v t) � v Bool | == t

instance myDSL Print where
lit x = P [toString x]
add (P x) (P y) = P (x ++ [" + ":y])
and (P x) (P y) = P (x ++ [" && ":y])
eq (P x) (P y) = P (x ++ [" == ":y])

instance myDSL Eval where
lit x = E x
add (E x) (E y) = E (x + y)
and (E x) (E y) = E (x && y)
eq (E x) (E y) = E (x == y)

Listing 2.3: A simple class-based shallowly EDSL

Class-based shallow embedding solves most of the problems previously faced with deep and
shallow embedding. The language is statically typed, the views are separated, adding a view is
simple, extending the language with a new construct is easy and operators can be overloaded.

Two problems remain. First, language constructs still can not be inspected. This is an
inherent property of shallowly EDSLs and unfortunately cannot be eliminated.

Second, variables are still not checked at compile time. Functions can be used to solve this.
This solution is not inherent to class-based deep embedding and can be used on regular deep
embedding and on shallow embedding as well. Given that function arguments are well-typed
in the host language, they can be used to represent typed variables. A variable declaration is
defined as a function where its argument represents the variable and the function body represents
the remaining of the program. As a result, any usage of the variable in the function body is
well typed. In order to avoid constructs that are not variables on the left-hand side of the
attribution operator, the types Var and Expr are introduced. In some views, these types are
phantom types [15].

An example of a class-based shallowly EDSL with compile time variable checks can be seen
on Listing 2.4. Eval is an example of a view with a phantom type: the type variable b.

:: Eval a b = E a
:: In a b = In infixl 0 a b
:: Var = Var
:: Expr = Expr

class expr v where
lit :: t � v t Expr
(+.) infixl 6 :: (v t p) (v t q) � v t Expr | + t

class var v where
var :: ((v t Var) � In t (v a p)) � v a p
(=.) infixr 3 :: (v t Var) (v t p) � v t Expr

instance expr Eval where
lit x = E x
(+.) (E a) (E b) = E (a + b)

6 CHAPTER 2. EMBEDDED DOMAIN SPECIFIC LANGUAGES

instance var Eval where
var _ = ...
(=.) _ _ = ...

test1 :: Eval Int Expr
test1 = var λk = 4 In

k =. k +. lit 7

test2 :: Eval Int Expr
test2 = var λk = 4 In

k =. lit True // Compilation error
Listing 2.4: A simple class-based shallowly EDSL with compile time variable checks

As seen in the example above, the variable k can be used after its declaration in a well typed
manner. Function test1 compiles successfully, as expected. Function test2, in the other hand,
does not compile due to a type error. Therefore, compile time check of variables was achieved.

Chapter 3

Task Oriented Programming

Task Oriented Programming (TOP) is a new programming paradigm used to develop online
collaborative applications [1]. In a TOP application, users — both people and other systems
— work together to accomplish a common goal [1]. Its central concept is called a task, an
abstraction that can be used for many different types of work. This abstraction, along with
other TOP concepts, allows the programmer to focus on design decisions instead of technical
details. TOP programs are declarative: they focus on what work should be performed, rather
than on how to perform it.

3.1 iTasks
The iTask system is an EDSL that implements the TOP paradigm. Its host language is the
pure and lazy functional programming language Clean [3]. iTasks uses generic programming
to automatically generate code for user-specified first-order data types whilst also allowing for
specialization. Given an iTasks program, the system generates code for both the server and the
client.

An iTasks task is a function that transforms a state, reacts to events and returns an observable
value. A task is represented by Task a and its observable value by TaskValue a, where a is the
type of the task. A TaskValue contains the current state of the value that a Task is processing.
The possible states of a TaskValue are shown on Figure 3.1. As seen below, once a value
stabilizes, it can not become unstable.

no value
value

value

stable

unstable

Figure 3.1: Possible states of a TaskValue

7

8 CHAPTER 3. TASK ORIENTED PROGRAMMING

A Task can be of any type, as long as it provides instances for the type classes in the
iTask type class collection. These instances can be automatically derived or explicitly declared.
Automatic derivation is available for any first-order type as long as it is not abstract. Basic
types have instances already defined in the iTasks library. Explicit declaration allows the user
to define custom instances of the iTask class collection if the default derived instance is not
suitable. Moreover, it allows instances for extendable, abstract and the function types.

3.2 Interaction

The iTasks library provides basic tasks for user interaction. Listing 3.1 shows the three basic
interactive tasks: enterInformation, viewInformation and updateInformation. They create
user interface elements to enter, view and update information respectively. As seen in Listing
3.1, these basic tasks include a class constraint on the type of the returned Task. This constraint
enforces that the type m has an instance of the iTask type class.

enterInformation :: d [EnterOption m] � Task m | iTask m
viewInformation :: d [ViewOption m] m � Task m | iTask m
updateInformation :: d [UpdateOption m m] m � Task m | iTask m

Listing 3.1: iTasks basic interaction functions

Listing 3.2 displays examples of how to use the basic interactive tasks. First, a new ADT
called Location is introduced. Next, its instance of iTask is automatically derived. Following,
a new example Location is introduced. Finally, new tasks are defined in terms of the basic tasks
presented in Listing 3.1.

:: Location = { city :: String, state :: String }

derive class iTask Location

location :: Location
location = { city="Omaha", state="Nebraska" }

enterLocation :: Task Location
enterLocation = enterInformation "Enter the location" []

viewLocation :: Task Location
viewLocation = viewInformation "View the location" [] location

updateLocation :: Task Location
updateLocation = updateInformation "Update the location" [] location

Listing 3.2: Example of basic iTasks interaction functions

Figure 3.2 displays the user interfaces generated for the basic tasks enterInformation (Figure
3.2a), viewInformation (Figure 3.2b) and updateInformation (Figure 3.2c).

3.3. COMBINATORS 9

(a) Enter information (b) View information (c) Update information

Figure 3.2: The visual representation of the basic iTasks interaction functions

3.3 Combinators
Although the basic tasks introduced in Section 3.2 allow the user to exchange information with
the iTasks application, they are quite limited. In order to allow the user to express more complex
behavior, task combinators were introduced. Combinators are functions (usually infix operators)
that determine how its argument tasks will be combined into a new task. There are only two
fundamental composition combinators: sequence and parallel [20]. All the other combinators in
the iTask library are derived from these fundamental combinators. Only the derived combinators
will be discussed in this document.

3.3.1 Sequential Combinators
Tasks can be executed in sequence using the >>* combinator, also called the step combinator.
Its type signature can be seen on Listing 3.3. The step combinator takes a Task a and a list of
task continuations as input. A task continuation defines a condition on when to execute another
task. It is a predicate that runs on either user actions, task values or thrown exceptions.

(>>*) infixl 1 :: (Task a) [TaskCont a (Task b)] � Task b | iTask a & iTask b

:: TaskCont a b
= OnValue ((TaskValue a) � Maybe b)
| OnAction Action ((TaskValue a) � Maybe b)
| E.e: OnException (e � b) & iTask e
| OnAllExceptions (String � b)

(>>=) infixl 1 :: (m a) (a � m b) � m b | iTask a & iTask b
(>>|) infixl 1 :: (m a) (m b) � m b | iTask a & iTask b

Listing 3.3: Sequential combinators

The >>= (also called bind) is an example of sequential combinator derived from the step
combinator. Its first argument is the first task to be executed and its second arguments is a
function that takes the first task’s value as input and returns a task. The >>| combinator is
derived from the bind combinator. It executes two tasks sequentially, but the value of the first
task is disregarded. On both >>= and >>|, the second task is executed if either the value of the
first task becomes stable, or it is unstable and the user presses a ”Continue” button.

3.3.2 Parallel Combinators
Tasks can be executed in parallel using the parallel combinator. All the other parallel combinators
in the iTasks library are derived from it. Among them, -&&- and -||- are the most commonly
used. The first executes two tasks in parallel and returns a tuple containing the result of both

10 CHAPTER 3. TASK ORIENTED PROGRAMMING

argument tasks. The -||- combinator executes two tasks in parallel, but behaves differently from
the -&&- combinator. The value of the combined task depends on the stability of the argument
tasks. If none of the tasks are stable, the combined task yields the last modified non-stable value.
If one of the values becomes stable, the combinator yields it, preserving its stability. The type
signatures of both combinators can be seen on Listing 3.4.

(-&&-) infixr 4 :: (Task a) (Task b) � Task (a,b) | iTask a & iTask b
(-||-) infixr 3 :: (Task a) (Task a) � Task a | iTask a

Listing 3.4: Parallel combinators

3.4 Shared Data Sources
Albeit task combinators are a powerful tool to communicate values among tasks, some applic-
ations need to perform ad hoc communication with the external world. Shared Data Sources
(SDSs) abstract from implementation details on how resources are accessed. A resource can be,
for example, a database, a file, the system time or a shared value in memory.

One approach to create an abstract view on shared data is called a lens [9]. A lens is
a bidirectional transformation that provides an interface for reading and writing shared data.
Lenses can be extended to allow change notifications: a view is notified when the underlying
shared data was modified. Thus, a view always presents updated information. This ability
to listen for notifications is called observing. Although change notifications are useful, each
notification has communication and performance costs. When the shared data is relatively small
and seldom updated, no problem arises. Although, if the data is represented by a large data
structure that is often updated, broadcasting notifications might impact performance.

This performance impact could be reduced if lenses were able to filter notifications based on
which part of the underlying data was modified. Traditional lenses do not provide a mechanism
to encode that information. Parametric lenses are an extension to traditional lenses that enable
notification filtering according to a focus domain [7]. This focus domain is used to encode
notification predicates that tell whether a change on the underlying shared source affects the
current view. This way, change notifications can be sent only to the views that are affected by
the change, reducing unnecessary notifications.

SDSs are implemented using parametric lenses. As it can be seen from Listing 3.5, an SDS
has three type parameters. The first one is the type of the focus domain. The second and third
types are the read and write data types respectively. Note that they do not need to be the same
type. A ReadWriteShared is an SDS where the focus domain is of type () (void). A Shared is
a ReadWriteShared where read and write types are the same.

There are four basic functions to operate on SDSs: get, set, update and watch. Their type
signatures can be seen on Listing 3.5. The get operation simply fetches the current value of an
SDS. Analogously, the set function sets an SDS’s value. The upd operation sets the SDS’s value
based on its current value. The watch function continuously reads the value of an SDS. The get,
set and update operations are atomic: during a reading, no other operation is executed.

:: SDS p r w = ...
:: ReadWriteShared r w :== SDS () r w
:: Shared a :== SDS () a a

get :: (ReadWriteShared a w) � Task a | iTask a
set :: a (ReadWriteShared r a) � Task a | iTask a
upd :: (r � w) (ReadWriteShared r w) � Task w | iTask r & iTask w

3.4. SHARED DATA SOURCES 11

watch :: (ReadWriteShared r w) � Task r | iTask r

Listing 3.5: Shared Data Sources definitions

SDSs can be composed to create new SDSs using combinators defined in the iTasks library. In
addition, interactive tasks equivalent to the ones described in Section 3.2 are defined for the type
ReadWriteShared. Their signatures can be seen on Listing 3.6. Both of these interactive tasks
observe the SDS. Therefore, changes on the ReadWriteShared will be automatically displayed.

viewSharedInformation :: d [ViewOption r] (ReadWriteShared r w) � Task r | iTask r
updateSharedInformation :: d [UpdateOption r w] (ReadWriteShared r w) � Task r | iTask r & iTask w

Listing 3.6: SDS interactive tasks

12 CHAPTER 3. TASK ORIENTED PROGRAMMING

Chapter 4

The mTask EDSL

In some cases, interactions between the iTasks system and the real world could be automated.
This is the case for tasks such as reading the room temperature or turning a LED on once a
task is completed. Microcontrollers are perfect for this kind of task. They are cheap systems
that great for control tasks that involve reading sensors (e.g., temperature, light) and controlling
actuators (e.g., motors, LEDs). Due to hardware limitations, microcontrollers can not run iTasks
tasks. As an alternative, the mTask EDSL was created. This DSL allows the programming of
microcontrollers in Clean using a TOP-like approach [13, 14, 17].

The mTask DSL is a type safe, class-based, multi-view EDSL (Section 2.2.1). It currently
has three views: C++ code generation, evaluation and interpretable bytecode generation. An
overview of the views is given in Section 4.1.2.

4.1 The Language
Because mTask is a shallowly EDSL, language constructs are represented as functions in the host
language. Instead of using functions directly, mTask is composed by type constructor classes, as
described in Section 2.2.1. A mTask type constructor class can be seen on Listing 4.1. In this
example, the arith class is partially presented. An overview of mTask classes will be presented
in Section 4.1.1.

class arith v where
lit :: t � v t Expr | mTaskType t
(+.) infixl 6 :: (v t p) (v t q) � v t Expr | type, +, t & isExpr p & isExpr q

Listing 4.1: A mTask class

Language constructs are of the form v t p where v is the view, t is the type of the construct
and p is the construct’s role. The lit function lifts a value to the mTask domain. The +.
infix operator adds two expressions (represented by the isExpr class constraint) and returns
another expression. The constraints type and mTaskType ensure that only mTask types can be
used. The constructor role specifies whether the constructor is an updatable, an expression or a
statement [14, 17]. The definitions of the constructor roles and the isExpr class along with its
instances can be seen in Listing 4.2.

:: Upd = Upd
:: Expr = Expr
:: Stmt = Stmt

13

14 CHAPTER 4. THE MTASK EDSL

class isExpr a :: a
instance isExpr Upd
instance isExpr Expr

Listing 4.2: mTask construction roles

Views are instances of mTask classes. Due to the multi-class nature of mTask, a view can
choose which language constructs it supports by selecting which classes it implements. Moreover,
new language constructs can be added to the language without the need to change existing code.

4.1.1 Overview of the Classes
The mTask EDSL is formed by many type constructor classes. Here, only the classes that
are most relevant to the research are presented. Some class constraints were omitted to ease
understanding.

Expression: There are two classes to create expressions in mTask: arith and boolExpr. They
model constructs for arithmetic and boolean expressions respectively. The arith class contains
operators for addition, multiplication, subtraction and division in addition to a function to lift
values to the mTask domain. The boolExpr contains operators over booleans (e.g., conjunction
and disjunction) in addition to equality and inequality operators. Shortened versions of these
classes can be seen in Listing 4.3.

class arith v where
lit :: t � v t Expr
(+.) infixl 6 :: (v t p) (v t q) � v t Expr | + t
...

class boolExpr v where
(&.) infixr 3 :: (v Bool p) (v Bool q) � v Bool Expr
Not :: (v Bool p) � v Bool Expr
(==.) infix 4 :: (v a p) (v a q) � v Bool Expr | == a
(<.) infix 4 :: (v a p) (v a q) � v Bool Expr | < a
...

Listing 4.3: mTask expression classes

Control flow: The IF class implements if constructs. The IF function implements a if-then-
else statement and the ? infix operator implements an if-then statement. Given that mTask
tasks can be executed periodically, loop constructs are unnecessary and are not part of mTask.
The seq class contains the the monadic bind operator (>>=.) for mTask. In addition, it contains
a variant of the monadic operator where the result of its first argument is disregarded. This
operator is equivalent to the semicolon in imperative languages. The retrn class contains a
single function that terminates the task. Control flow classes can be seen in Listing 4.4

class IF v where
IF :: (v Bool p) (v t q) (v s r) � v () Stmt | isExpr p
(?) infix 1 :: (v Bool p) (v t q) � v () Stmt | isExpr p

class seq v where
(>>=.) infixr 0 :: (v t p) ((v t Expr) � (v u q)) � (v u Stmt)

4.1. THE LANGUAGE 15

(:.) infixr 0 :: (v t p) (v u q) � v u Stmt
class retrn v where

retrn :: v () Expr

Listing 4.4: mTask control flow classes

Shared Data Sources The sds class contains functions to create Shared Data Sources. The
sds function is used to create updatable SDSs and the con function is used to create constant
SDSs. Both use the technique described in Section 2.2.1 to guarantee a type-safe usage of SDSs.
The sdspub class contains a construct to publish SDSs. The assign class contains a single
function to enable assignment in mTask. SDS classes can be seen in Listing 4.5. Notice that the
functions below enforce the construct role Upd to ensure that only updatables are used.

:: In a b = In infix 0 a b
:: Main a = {main :: a}

class sds v where
sds :: ((v t Upd) � In t (Main (v c s))) � (Main (v c s))
con :: ((v t Expr) � In t (Main (v c s))) � (Main (v c s))

class sdspub v where
pub :: (v t Upd) � v t Expr

class assign v where
(=.) infixr 2 :: (v t Upd) (v t p) � v t Expr | isExpr p

Listing 4.5: mTask SDS classes

Input and output There are constructs to handle both analog and digital input and output.
The classes dIO and aIO contain functions to handle digital and analog I/O, respectively. Both
classes create updatables that can be used to read from and write to a pin. The userLed class
contains functions to turn LEDs on an off. Input/output classes can be seen in Listing 4.6.

:: DigitalPin = D0 | D1 | D2 | D3 | D4 | D5 |D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13
:: AnalogPin = A0 | A1 | A2 | A3 | A4 | A5
:: UserLED = LED1 | LED2 | LED3

class dIO v where
dIO :: DigitalPin � v Bool Upd

class aIO v where
aIO :: AnalogPin � v Int Upd

class userLed v where
ledOn :: (v UserLED q) � (v () Stmt)
ledOff :: (v UserLED q) � (v () Stmt)

Listing 4.6: mTask I/O classes

4.1.2 Overview of the Views
Currently, mTask has three views: C++ code generation, evaluation and bytecode generation.

The C++ code generation view translates language constructs to Arduino’s dialect of C++.
The Arduino IDE compiles the C++ source code to machine code for the microcontrollers. It

16 CHAPTER 4. THE MTASK EDSL

is convenient to generate C++ code instead of machine code because it saves us from the task
of generating code for different microcontrollers. In addition, C++ gives us the level of control
necessary to handle low level input/output operations. This view consists of a function that
modifies a compilation state, CODE. The state is a record that stores the generated code along
with some information to generate identifiers and to keep track of source code indentation. At
the end of compilation, the CODE record is transformed into C++ code which can be saved into
disk, loaded into the Arduino IDE and uploaded to microcontrollers.

The evaluation view translates language constructs into Clean programs. It consists of a
function that modifies an evaluation state. The state is a record that stores tasks, program
variables and input/output information. Given that programs running on microcontrollers are
hard to debug, one can benefit from this view to find program errors. This view can be used to
build a mTask simulator using iTasks where the user can observe the state of the program on
each loop of the microcontroller.

The last mTask view transforms language constructs into interpretable bytecode. Since the
research focused on this view of mTask, it will be discussed in more detail in Section 4.2.

4.2 Interpreted mTask

4.2.1 Motivation
Although the C++ code generation view works as expected, it poses a limitation. Tasks gener-
ated by this view are static: once they are compiled and uploaded, they cannot be changed. If
the user wishes to change the current task or add new tasks to the microcontroller, the program
has to be recompiled and reuploaded. This presents two problems. First, microcontrollers have
a limited amount of write cycles in their program memory [17]. Therefore, repeated uploading
of new programs is not desired. Second, due to the nature of microcontrollers and the IoT,
such devices are often located on places that are hard to reach. Often, microcontrollers must be
physically reached and plugged to a computer in order to be reprogrammed. Ideally, tasks would
be uploaded without the need to plug the devices into a computer. Although some microcon-
trollers may be remotely reprogrammed using Over-the-Air programming, this technique erases
the device’s RAM. Therefore, the tasks that were executing before the device reprogramming
are lost. In an ideal scenario, sending a new task to a device would preserve the current tasks
being executed.

To overcome that limitation, a new view of mTask was created [17]. This view generates
interpretable bytecode rather than C++ code. The bytecode can be interpreted by a runtime
system in the device (the client). This runtime system (the engine), is written in C and can be
compiled and uploaded using the Arduino IDE. Tasks and SDSs are sent to the client dynamically.
Therefore, devices are programmed once but can execute tasks dynamically. Additionally, this
setting can be more robust than the static mTask. If the communication with a device fails, the
server can dynamically send the tasks that were running on it to another suitable device.

4.2.2 Communication Protocol
Devices can be connected either via Serial communication or TCP. The server and the client
communicate via a protocol based on messages. Outgoing messages are of type MTaskMSGSend
— messages are always named from the server’s perspective. There are messages for task addi-
tion and deletion, shutdown request, SDS addition and update and specification request. The
definition of the MTaskMSGSend ADT can be seen in Listing 4.7.

4.2. INTERPRETED MTASK 17

:: BCValue = E.e: BCValue e & mTaskType e

:: MTaskMSGSend =
MTTask MTaskInterval String

| MTTaskDel Int
| MTShutdown
| MTSds Int BCValue
| MTUpd Int BCValue
| MTSpec

Listing 4.7: Communication protocol: sent messages

The client communicates with the server via messages of type MTaskMSGRecv. There are mes-
sages for task acknowledgment and deletion, SDS acknowledgment, deletion and publication, de-
bugging messages, device specification and empty messages. The definition of the MTaskMSGRecv
ADT can be seen in Listing 4.8. The MTaskDeviceSpec data type contains the specification of
the device, i.e. its stack size, memory size, number of digital and analog pins.

:: MTaskMSGRecv =
MTTaskAck Int Int

| MTTaskDelAck Int
| MTSDSAck Int
| MTSDSDelAck Int
| MTPub Int BCValue
| MTMessage String
| MTDevSpec MTaskDeviceSpec
| MTEmpty

Listing 4.8: Communication protocol: received messages

4.2.3 The Client
The client runs a loop function that runs repeatedly until a shutdown message is received. The
loop consists of two pieces: checking for incoming messages and running the task scheduler. The
first step is straightforward: it checks the input buffer and processes any messages that might
be in it. The task scheduler runs tasks based on task intervals. Tasks can run once (OneShot),
repeatedly based on an interval (OnInterval) or based on an interruption (OnInterrupt). The
interpreter is responsible for the execution of a task’s bytecode.

4.2.4 The Simulator
During my Research Internship, I developed an iTask simulator for the interpreted mTask. The
motivation behind it is the same as the simulator for the static mTask: programs running in
microprocessors are hard to debug. The simulator mimics the C engine in many aspects, including
communication, task scheduling and instruction interpretation.

The simulator provides a web interface where the user can inspect the communication channels
and the simulator state. The simulator state contains data about the simulator clock, memory,
stack, tasks, SDSs and peripherals (pins, LED, etc). The web interface allows peripheral values
to be set manually. This is a great addition to the mTask development environment, given
that sensor values can not be easily simulated on microcontrollers. In addition, users can set
breakpoints on bytecode instructions and inspect the state of the simulator on specific points.

18 CHAPTER 4. THE MTASK EDSL

The simulator offers two modes: manual and automatic. Manual mode requires user inter-
action via the web interface to run. Manual simulation can be performed via either big or small
steps. These two step options offer different levels of abstraction to the user. Big steps execute
one entire engine loop at a time. Small steps execute each bytecode instruction individually.
Automatic mode executes the simulator without the need of user interaction. It is particularly
useful when the programmer needs to simulate a device but does not want to step manually
through its execution. Many simulators on different modes can run simultaneously.

4.2.5 Devices
The mTask library provides functions to interact with devices. Their type signatures can be seen
in Listing 4.9. Some of these functions take an MTaskDevice as input.
:: Channels :== ([MTaskMSGRecv], [MTaskMSGSend], Bool)

:: MTaskDevice

class channelSync a :: a (Shared Channels) � Task ()

withDevice :: a (MTaskDevice � Task b) � Task b | channelSync a

liftmTask :: MTaskDevice MTaskInterval (Main (ByteCode a Stmt)) � Task ()
Listing 4.9: Device interaction functions

A server communicates with devices by sending and receiving messages (Section 4.2.2). Mes-
sage communication is performed by synchronizing a device’s communication channels with the
actual device. Device channels (represented by the Channels data type) contain messages re-
ceived from the device (MTaskMSGRecv), messages to be sent to the device (MTaskMSGSend) and
the channels’ status (Bool).

The channelSync class is responsible for device communication and is implemented by every
mTask device type (i.e. TCP, Serial, simulator). It contains only one function — also called
channelSync — which synchronizes a device’s channels. The withDevice function takes a
synchronizable device specification (any type with an instance of the channelSync class) and a
function as input. This argument function is the actual Task to be performed with the device.
The withDevice task performs three tasks in parallel: it synchronizes the device channels (using
channelSync), processes incoming MTaskMSGRecv messages and executes its argument task.

The liftmTask function sends an mTask task to the given device. Its first argument is the
device to which the task will be sent. Its second arguments is the task interval. Its last argument
is the actual mTask task to be sent. The liftmTask task stabilizes whenever its argument task
finishes executing on the device.

4.3 Examples
Two examples of mTask tasks can be seen in Listing 4.10. The first example, switch, turns an
LED on and off based on a switch connected to digital pin D0. The second example, curtains,
opens and closes curtains based on the room lighting. The curtains’ controller is connected
to digital pin D0 and the light sensor is connected to analog pin A0. When the light sensor
value is greater then 3, the curtains open. Otherwise, the curtains close. In addition, an alarm
(represented by the alarm SDS) is triggered when the curtains open. Once the curtains open
and the alarm is triggered, the task terminates.

4.3. EXAMPLES 19

switch :: Main (v () Stmt)
switch = { main =

IF (dIO D0) (
ledOn (lit LED1)

) (
ledOff (lit LED1)

)}

curtains :: Main (v () Stmt)
curtains = sds λalarm = False In { main =

IF (aIO A0 >. lit 3) (
dIO D0 =. lit True :.
alarm =. lit True :.
pub alarm :.
retrn

) (
dIO D0 =. (lit False)

)}

Listing 4.10: Examples of mTask tasks

20 CHAPTER 4. THE MTASK EDSL

Chapter 5

The Application

The first step to answer the research question was to choose an application to develop. This
chapter presents the criteria used in the selection process and the application chosen: home
automation.

5.1 Selection Criteria
The application developed during the research should ideally display characteristics inherent to
IoT applications [21, 18, 22]. Although, some of there characteristics — energy consumption,
performance and security — were not considered during the research. These aspects were ignored
because the development of iTasks did not take them into consideration. Additionally, some
criteria were added based on the research question.

The following criteria were used to choose an application:

Suitable The application should solve a problem that is suitable for mTask. This narrows the
choice to IoT applications that can be developed for platforms supported by mTask.

Non-trivial Trivial applications (e.g. an LED blinking) were previously developed [17]. There-
fore, the application should not solve a trivial problem — e.g. a simple hallway motion-activated
light sensor. It should go beyond a purely reactive system. It does not have to solve a novel
problem, but its development should be adequately challenging.

Simple Due to time constraints, it should be simple enough to be developed during this re-
search. Since building a full-pledged application is not the goal of the research, some concerns as
feature completeness, user experience design and security are not taken into account. Its source
code should not be too complex.

Interesting It is not enough that the application is suitable and technically good. It should
tackle an existing, interesting problem. Ideally, a problem which users inserted into the applica-
tion domain would be willing to pay for a solution.

Significant The application should somehow improve the environment it is inserted into. Ex-
amples are accelerating an assembly line, saving commute time, improving one’s health or well
being or reducing operational cost.

21

22 CHAPTER 5. THE APPLICATION

Comprehensible Its domain and main features should be easily understandable by non-
domain experts. Its functionality details and operational features might require specific know-
ledge, but the application should be easily described on a high level to someone who is not
familiar with its domain. Comprehensibility is relevant because it improves the application and
therefore the research’s reachability.

Robust The application should be able to handle errors to some extent. It should at least be
able to detect and communicate device disconnection. Ideally, it would automatically migrate
tasks from disconnected devices to available devices whenever possible.

Highly connected It should support multiple devices simultaneously. These devices should
be able to exchange information (e.g. sensor values) when suitable. Ideally, the devices would
be connected wirelessly.

Dynamic The application should not be static. Given that the interpreted version of mTask
(Section 4.2) is being explored, its dynamic nature should be exploited. The application domain
should naturally allow dynamicity. Ideally, tasks would be sent to and removed from devices
regularly.

Diverse It should use as many peripherals as possible. Since IoT applications often handle a
heterogeneous group of peripherals, it is important that a diverse group of sensors and actuators
is used. The application should not restrict itself to a couple of peripherals.

Extensive The application should use mTask features extensively. Given that it is testing
mTask’s capabilities, it is important that the application tests as many mTask features as pos-
sible. There is a correlation between the number of features used by the application and the
certainty about mTask’s abilities.

5.2 Home Automation
Many potential IoT applications were considered (e.g. greenhouse automation) to be developed
during research. After a systematic selection process based on the selection criteria described
on Section 5.1, a home automation solution was chosen. A detailed analysis of why this domain
was chosen is presented in Section 5.4.

Home automation might refer to different levels of automation of home tasks. By defini-
tion, any tool or machine that automates a home task constitutes a home automation solution.
Historically, home automation became popular with the advent of distributed electricity. Daily
tasks as dishwashing or drying clothes were automated by appliances that today are common in
many households around the world.

In the last decades, home automation gained another meaning with the invention of electronic
solutions that control virtually any electronic in a house. Lighting, air conditioners, heaters,
entertainment systems and doors are common components controlled by home automation solu-
tions. Frequently, these systems are composed by a central control unit with a user interface (e.g.
computer, tablet, smartphone, wall control panel), a communication channel (e.g. Bluetooth,
LAN, Internet, infrared) and devices to be controlled (e.g. lamp, air conditioning unit, doors,
TV, appliances).

Automated tasks might be as simple as turning a light on when someone enters the room,
controlling the heater based on a target room temperature, locking the main door at a set time

5.3. APPLICATION DESCRIPTION 23

and closing the curtains based on the amount of natural light outside. They might also be more
elaborated as automatically turning the coffee maker on at 8:00 AM on work days, but only if
somebody is at home.

5.3 Application Description
The home automation application developed is called Autohouse. It enables and manages the
automation of a home (hereafter referred to as smarthome) using mTask. A smarthome is
composed by rooms that can be added and removed by its user. Each room contain devices
(called units in the application) that execute tasks chosen by the user.

A smarthome is managed via the web control panel. Multiple instances of the control panel
can run simultaneously. There, the user has access to the main features of the application:

• Manage home: add and remove rooms to the smarthome.

• Manage room: add and remove units to a room.

• Send task: send a new task to one of the available units.

• Stop task: delete a task that is currently running on a unit.

• Inspect unit: see which tasks are running on a unit.

5.3.1 Architecture
Autohouse is a centralized solution: a server (ideally located in the home) is the central com-
munication hub for both users and devices. User communication is accomplished via the web
control panel, which is hosted in the server. Device communication is accomplished via the
mTask library and its communication protocol described in Section 4.2.2. Figure 5.1 displays an
example architecture of Autohouse deployed on a home with three units.

U1 U2 U3

C1

C2

C3

Server

Figure 5.1: Autohouse Architecture

In Figure 5.1, units are represented as diamonds, the server is represented as a rectangle and
clients accessing the web control panel are represented as circles. Rooms are just an abstraction

24 CHAPTER 5. THE APPLICATION

layer to ease the use of Autohouse and therefore are not represented in its architecture. Units
are microcontrollers equipped with peripherals (sensors, actuators) and with a communication
interface. The server can be any computer with networking capabilities that is supported by
Clean and that has enough resources to run the application. A client is a device accessing the
control panel using a web browser. Note that the server itself may be a client (C2 in Figure
5.1), since it can access the control panel via a web browser. In addition, if the server is exposed
to the Internet, the control panel can be accessed remotely. It is important to point that the
development did not regard security. When exposed to the Internet, the application can be
accessed by anyone.

Communication between the server and the units must be persistent (represented by the
continuous line between them in Figure 5.1). If the communication is interrupted, the server
interprets it as a disconnection. Communication between the server and remote clients can be
transient (represented by the dotted line between them in Figure 5.1). Since remote clients are
just managing the application, their connection does not have to be persistent. The server can
access the control panel locally and therefore does not communicate wirelessly (represented as
C2 attached to the server in Figure 5.1).

Following the ”highly connected” criterion introduced in Section 5.1, units should connect to
the servers wirelessly. The mTask library supports two types of connections: Serial and TCP.
Although, which technology is used to establish these connections is irrelevant to the end user.
Therefore, Autohouse is technology agnostic in regard to communication between units and the
server. Units can, for example, establish a serial connection via Bluetooth or a TCP connection
via WiFi. As a consequence, Autohouse does not enforce a wireless connection between the units
and the server. The user decides which communication technology is more adequate to their
needs.

5.3.2 Tasks
The main purpose of Autohouse is to send automation tasks to units so they can be executed
without human supervision. Therefore, the tasks the application supports play a key role in
Autohouse. The application has a list of predefined tasks that are relevant to the house automa-
tion domain. The user can pick tasks from this default task list and select a unit to send it to.
The standard task list might be extended by adding new tasks to the Programs module. The
Autohouse standard tasks are listed below.

• Control a light based on a switch.

• Turn a light on when movement is detected.

• Lock a door when it gets dark.

• Open the garage door if a car is reversing.

• Turn a fan on when it gets humid enough, but turn it off when something is about to hit
it.

• Open and close windows based on a target temperature range.

• Open and close curtains based on the amount of light in the room.

• Manage the air conditioning unit and the heater based on a target room temperature and
on the actual room temperature.

5.4. APPLICATION ANALYSIS 25

5.3.3 Devices
Three platforms are supported by mTask: Arduino, POSIX and Mbed. Arduino [2] was chosen
as the main platform for Autohouse. Arduino is an open-source electronics prototyping platform
which has single-board microcontrollers specifications and software to support them. It was
chosen because of its open-source nature, popularity, well-established community and open-
source code availability.

The Arduino platform currently has many boards with different specifications and purposes.
The Arduino Uno Rev31 was chosen as the target device because of its popularity, extensibility
(using shields2), cost and limited resources. The Arduino Uno is based on the ATmega328P
microprocessor, which has only 2 KB of RAM. This memory limitation is a desired characteristic,
given that mTask’s suitability for microcontrollers is being tested and that such devices might
have extremely limited resources. The Arduino Uno operates at a frequency of 16 MHz, has 6
analog pins, 14 digital pins, 32 KB of flash memory and a built-in LED. Its digital and analog
pins are often used to interface with peripherals, including sensors and actuators.

Sensors and actuators are extremely relevant to Autohouse because they allow the application
to interface with the real world without human interference. Examples of sensors are temperat-
ure, humidity and movement sensors. Examples of actuators are buttons, switches, LEDs and
motors.

5.3.4 Sensors
Autohouse relies on the interpreted mTask and its Arduino client for peripheral support. There-
fore, it supports the same sensors the Arduino client does. Digital and analog pins can be
controlled explicitly, but mTask also provides native support for some sensors. Namely, for the
DHT22 temperature and humidity sensor, the HCSR04 ultrasonic sensor, digital light sensor,
Grove analog light sensor (P) V1.1 and Passive Infrared Sensor (PIR). Native sensor support al-
lows programming in a high level of abstraction, in which sensor values represent their semantics.
For example, reading from a temperature sensor returns a Temperature, an ADT that represents
temperature in Celcius. Some of these sensors were not previously supported by mTask. Section
6.2.3 describes how these peripherals were incorporated into mTask.

5.3.5 Actuators
Similarly to sensors, Autohouse relies on the interpreted mTask and its Arduino client for actuator
support. Some actuators (e.g. switches, buttons) can be directly controlled through pins and
therefore do not require custom support. Other actuators, though, require custom support to
be practically used. The interpreted mTask provides native support for LCD displays (to print
integers only), LEDs and servos. Servos were not previously supported by mTask. Section 6.2.3
describes how servos were incorporated into mTask.

5.4 Application Analysis
The selection process that chose Autohouse as the research application was guided by the selection
criteria presented in Section 5.1. In this section, the Autohouse choice is motivated by analyzing
the application under those same criteria.

1Arduino Uno Rev3. Available at https://store.arduino.cc/arduino-uno-rev3. Accessed on August 26th
2018.

2Arduino Shields. Available at https://www.arduino.cc/en/Main/arduinoShields. Accessed on August 26th
2018.

https://store.arduino.cc/arduino-uno-rev3
https://www.arduino.cc/en/Main/arduinoShields

26 CHAPTER 5. THE APPLICATION

Suitable Autohouse is suitable for mTask. Its components are small devices connected to a
server that (if connected to the internet) can be accessed anywhere. In addition, Autohouse
targets Arduino Uno, a board supported by mTask.

Non-trivial It is not a trivial application. The complexity of Autohouse goes beyond a simple
reactive system. It is an application with a user interface where its user can dynamically add
devices and send automation tasks to such devices. Its tasks can be simple reactive tasks but
can also contain complex logic based on input from different sensors and devices.

Simple Autohouse was simple enough to be developed during the research. Thanks to the
prototyping nature of iTasks, its development could abstract from many technical details and
focus on design decisions.

Interesting Home automation is becoming increasingly popular and its industry is growing
consistently3. There is no industry standard and the market is highly fragmented. Therefore,
Autohouse solves an existing, interesting problem.

Significant Autohouse might improve many aspects of its user’s life. For example, Autohouse
tasks can save time (e.g. automatically opening the garage door when a car moves backwards).
They can also save energy (e.g. turn the hallway light off if no one is walking by). They might
also improve the user’s well being (e.g. automatically regulate room temperature). In addition,
tasks can be simply convenient (e.g. open the curtains when it is bright outside).

Comprehensible The home automation domain is comprehensible to most people. We all
live in homes and can relate to most of the tasks Autohouse offers. Therefore, no explanation of
the application domain is required to comprehend it.

Robust Autohouse is a robust application when it comes to device disconnection. If a unit is
disconnected from the server, the system migrates the tasks that were running on that unit to
another, suitable unit. The application does not support server fault tolerance. Although the
distributed version of iTasks could have been used, Autohouse runs on the single server version
instead [19].

Highly connected Autohouse supports simultaneous devices. Although wireless connections
are supported (e.g. Bluetooth), Autohouse does not enforce them (Section 5.3).

Dynamic The Autohouse system allows for dynamic addition and removal of devices. In
addition, a user might send tasks to devices dynamically. Home automation is a domain that
naturally requires dynamicity. It is expected that Autohouse users send and remove tasks from
devices on a daily basis.

Diverse Autohouse supports five different sensors and three actuators. Therefore, in total,
eight peripherals are integrated into the application. Although this number is small when com-
pared to some commercial applications out there, it is enough to display Autohouse’s diversity.

3Global Home Automation Market Growth Opportunities 2017-2022 - Market is expected to reach an
estimated $75.2 billion. Available at https://markets.businessinsider.com/news/stocks/global-home-
automation-market-growth-opportunities-2017-2022-market-is-expected-to-reach-an-estimated-75-2-
billion-1007431226. Accessed on August 27th 2018.

https://markets.businessinsider.com/news/stocks/global-home-automation-market-growth-opportunities-2017-2022-market-is-expected-to-reach-an-estimated-75-2-billion-1007431226
https://markets.businessinsider.com/news/stocks/global-home-automation-market-growth-opportunities-2017-2022-market-is-expected-to-reach-an-estimated-75-2-billion-1007431226
https://markets.businessinsider.com/news/stocks/global-home-automation-market-growth-opportunities-2017-2022-market-is-expected-to-reach-an-estimated-75-2-billion-1007431226

5.4. APPLICATION ANALYSIS 27

Extensive The application tests mTask features thoroughly. Regarding the mTask language,
Autohouse’s default tasks use all of the language constructs implemented by the mTask’s inter-
preted view (Section 4.2). In addition, it makes use of mTask functionality to connect to devices
and to send tasks to it. Autohouse benefits from mTask abstraction layer over devices and does
not handle them directly.

28 CHAPTER 5. THE APPLICATION

Chapter 6

Application Development

After the application domain was chosen, development began. Although Autohouse was de-
veloped during the research, it was not the research object. It was used merely as a tool to
assess mTask’s capabilities and thus answer the research question. Therefore, this chapter will
not focus on Autohouse itself, but on the limitations of mTask unearthed during its development.
A quick overview of its development is given in Section 6.1. Some limitations of mTask were
overcome and are described in Section 6.2. Other limitations remain and are described in Sec-
tion 6.3. Finally, Section 6.4 describes how automatic task migration was accomplished without
modifying mTask.

6.1 Development Overview
Autohouse is an application developed using Clean, iTasks and mTask. Due to time constraints, it
was thoroughly tested only on macOS 10.13 (High Sierra). It was tested on Linux (Ubuntu 16.10)
on early stages of development. Autohouse’s source code is available at its GitHub repository1.

6.1.1 Application Architecture
Autohouse development started just like many iTasks applications: defining ADTs and SDSs.
The application has ADTs that model key concepts in the home automation domain: House
(representing the smarthome), Room and Unit (representing a device). A House is a list of Rooms
and a Room is essentially a list of Units.

All the application data lives in one SDS that represents the entire house. Other SDSs (e.g.
for rooms and units) are derived from this main SDS using parametric lenses [7]. Rooms and
units have unique ids that are used to locate them in the house SDS. The default automation
tasks are stored in a list of Program — in Autohouse’s source code, automation tasks are named
programs to avoid name clashing with iTasks’ Task ADT. The Program record contains all the
information inherent to an automation task.

The application contains three main tasks running in parallel: manage house, manage units
and send new task. The first one lets the user create and edit rooms. The second allows the user
to inspect, send tasks to and disconnect units. The last task lets the user pick a mTask task to
send to a device that is compatible with it.

Once the iTasks foundation was created, the mTask development could begin.
1Autohouse on GitHub. Available at https://github.com/matheusamazonas/autohouse.

29

https://github.com/matheusamazonas/autohouse

30 CHAPTER 6. APPLICATION DEVELOPMENT

6.1.2 Using the Simulator
As expected, device features were first implemented using simulators (Section 4.2.4). These
devices proved to be great for early stages of development. First, multiple simulators can be
easily instantiated, which was particularly useful when physical devices were not available yet.
Simulators allowed the development of peripheral tasks even before some peripherals were avail-
able for testing. Additionally, given that simulators are highly customizable, some features that
depended on different device configurations were tested. Such freedom to quickly choose between
different device configurations does not exist when dealing with physical devices.

Although the simulator was particularly helpful during early stages of development, it proved
to be a great debug tool during later stages as well. Whenever a device behaved unexpectedly, the
same environment was reproduced using a simulator. Then, using the debugging UI, the device’s
state (i.e. memory, tasks, program counter, peripheral values) could be inspected. Using the
simulator as a debug tool became standard practice during Autohouse’s development.

6.1.3 Device Communication
Once prototyping using the simulator was over, development moved to physical devices. But one
problem had to be solved before deploying mTask tasks on Arduinos: wireless device communic-
ation. Ideally, Autohouse would communicate with its devices wirelessly. But so far, only Serial
connections over USB were used to connect to Arduinos. Two wireless options were taken into
consideration: Wi-Fi (through TCP) and Bluetooth (through Serial).

The first option tested was Wi-Fi, specifically with the ESP8266. The ESP8266 is a system
on a chip with a microcontroller, a full TCP/IP stack and Wi-Fi. It can be used as a Wi-Fi
module (giving other microcontrollers Wi-Fi capabilities) and as a standalone microcontroller.
In Autohouse’s setting, it would be used to give the Arduino boards Wi-Fi capabilities. A
microcontroller can use Hayes commands2 to control the ESP8266 as a Wi-Fi module. Thus,
a library was required to interface with it. A couple of open-source libraries were tested3,4,
but they either did not offer some necessary features (e.g. retrieve the list of connected clients)
or behaved unexpectedly (e.g. losing received messages). After some unsuccessful attempts to
adapt the existing libraries, Wi-Fi was put aside and Bluetooth was considered as an alternative.

The Bluetooth module tested was the HC-05, a Bluetooth 2.0 Serial Port Protocol (SPP)
module. Since this module runs through Serial, it can be directly connected to the Arduino
board’s Serial pins (TX and RX). Incoming data is preprocessed by the HC-05 and send directly
to the device’s Serial port. Therefore, no client data processing is required to transmit data
via Bluetooth. Additionally, no code changes were necessary to support Bluetooth connection.
When compared to Wi-Fi, Bluetooth brought clear advantages — i.e. it works out of the box
and does not required additional code — and therefore was chosen to be used as Autohouse’s
wireless solution.

6.1.4 Device Deployment
Once the wireless communication was set up, development moved to physical devices. First, all
peripherals were tested using a single Arduino board to ensure that they were compatible. Once

2Hayes command set - Wikipedia. Available at https://en.wikipedia.org/wiki/Hayes_command_set. Ac-
cessed on September 14th 2018.

3WiFiEsp on GitHub. Available at https://github.com/bportaluri/WiFiEsp/tree/master/src. Accessed on
September 14th 2018.

4ESP8266wifi on GitHub. Available at https://github.com/ekstrand/ESP8266wifi. Accessed on September
14th 2018.

https://en.wikipedia.org/wiki/Hayes_command_set
https://github.com/bportaluri/WiFiEsp/tree/master/src
https://github.com/ekstrand/ESP8266wifi

6.2. CHANGES TO MTASK 31

all peripherals were tested using mTask tasks, more devices were added to the Autohouse system.
The test system contained five Arduino Uno compatible boards. Each board was equipped

with a HC-05 Bluetooth module, two LEDs, two push down buttons, a PIR and temperature,
humidity, ultrasonic and analog light sensors. The boards had similar capabilities in order to
test task migration (tasks should only migrate to devices that are compatible with it). Only
one board was equipped with a servo. This choice was also motivated by the task migration
feature: if a device running a task that uses a servo disconnects from the server, its task should
not migrate because no other device has a servo.

Once device deployment finished, Autohouse’s standard task list was created and tested.
Autohouse’s version5 0.1.0 corresponds to the end of this development phase.

6.2 Changes to mTask
Limitations of mTask surfaced during the development of Autohouse. Some of these limitations
were overcome by changing mTask. These changes are described below.

6.2.1 Variables
Since mTask is an imperative language, it would benefit from mutable data features. Although
there are no mTask constructs to represent variables, SDSs might be used as updatable data
containers. In such a setting, an SDS is created for each desired variable. This trick brings
updatable data storage to mTask, but it prompts two problems.

First, there is no separation of concerns. Variables and SDSs should be, by definition, different
things. A variable is a local updatable data storage in memory. An SDS is an abstraction layer
over any kind of shared data, including data in memory. Using an SDS locally goes against
what a shared data source represents. Second, when SDSs are sent to devices, they are not
attached to a specific task. Also, on the current version of mTask, there is no way to establish
whether an SDS belongs to a given task. As a consequence, SDSs are never deleted from devices.
Variables, on the other hand, are always bond to a specific task and could be removed with their
correspondent task altogether, saving space in the device’s memory. Thus, mTask could benefit
from a language construct for variables.

The vari class was created to fill this gap. It contains two functions: vari and con, repres-
enting variable and constant data storage respectively. Its definition can be seen in Listing 6.1.
From a language construct point of view, the sds and vari classes do not differ much. Both
classes contain constructs that might be used as updatables and as expressions. But there are
two differences between these classes. First, vari contains a construct for constant data: con.
Second, vari functions expect a value of type t as its initial value (seen as the first argument
of In in Listing 6.1). The sds function expects a (Shared t) instead. The biggest difference
between the sds and vari classes regards their behavior on the interpreted view of mTask. Vari-
ables belong to a task and will live as long as the task lives. SDSs are not bound to a task and
will live in the device indefinitely.

:: Vari = Vari

instance isExpr Vari
instance isUpd Vari

5Autohouse release 0.1.0 on GitHub. Available at https://github.com/matheusamazonas/autohouse/
releases/tag/0.1.0.

https://github.com/matheusamazonas/autohouse/releases/tag/0.1.0
https://github.com/matheusamazonas/autohouse/releases/tag/0.1.0

32 CHAPTER 6. APPLICATION DEVELOPMENT

class vari v where
vari :: ((v t Vari) � In t (Main (v c s))) � (Main (v c s))
con :: ((v t Expr) � In t (Main (v c s))) � (Main (v c s))

Listing 6.1: The vari class

Listing 6.2 displays an example of variables in mTask: the task blink. This task blinks LED1
based on the value of variable v. The variable v is created using the vari construct. Its value
is updated using the =. infix operator, similarly to SDSs. It can also be used as a boolean
expression, as the condition to an IF construct.

All Autohouse automation tasks must be of type Main (v () Stmt). The noOp after the
attribution in Listing 6.2 is required to ensure that the program matches that type. The noOp
construct is a wild card used whenever the type of a construct does not match its desired type.

blink :: Main (v () Stmt) | program v
blink = vari λv = False In { main =

IF (v) (
ledOn (lit LED1)

) (
ledOff (lit LED1)

) :.
v =. Not v :. noOp
}

class noOp v where noOp :: v t p
Listing 6.2: Example of the usage of variables in mTask

The addition of variables to the language required changes on mTask’s communication pro-
tocol (Section 4.2.2). When a task is sent to a device, its variables must be sent as well. Therefore,
a MTTask message must include the variables used by the given task. Variables are modelled in
the BCVariable record. A variable contains a unique (within a task) identifier and its initial
value. The BCVariable record and the communication protocol change can be seen in Listing
6.3.

:: BCVariable = { vid :: Int, vval :: BCValue }

:: MTaskMSGSend
= MTTask Int MTaskInterval [BCVariable] String
...

Listing 6.3: Change in mTask’s communication protocol to accommodate task variables

Additionally, the simulator and the client engine were modified to support task variables.
When a task is received, its variables are stored. During task execution, variables are fetched
and assigned similarly to SDSs. When a task terminates, its variables are removed from the
device.

6.2.2 Peripheral Code
The mTask library already supported some of the peripherals Autohouse planned to use: LEDs,
analog and digital pins. Although, new peripherals (e.g. light, temperature and humidity sensors)
were required by some of the default automation tasks. Following the natural development
process of an mTask application, these peripherals were first emulated using the simulator.

6.2. CHANGES TO MTASK 33

As more peripherals were implemented, it was clear that the workflow required to add a new
peripheral to the system could be improved.

Adding a new peripheral required changes on different parts of mTask. An overview of the
necessary changes can be seen below.

• A new class that represents the peripheral is added to the language.

• Depending on the peripheral, a new ADT is created to represent its values (e.g. DigitalPin).

• New bytecode instructions are created.

• Bytecode encodings are updated to support the new instruction and the possibly new ADT.

• The MTaskDeviceSpec record is modified to include a flag for the new peripheral.

• The simulator interpreter is updated to handle new bytecode instructions.

• The C client is modified to handle the new peripheral.

The changes on the C client code depended heavily on the type of peripheral being imple-
mented. Changes on the Clean code though, were often similar. Previously, peripheral code was
scattered around the mTask library. Peripheral classes were inside the Language module along
with possibly new ADTs. Instances of the peripheral classes for each mTask view were in the re-
spective view’s module. The simulator interpreter contained peripheral-specific code. Bytecode
encodings for basic types were mixed with encodings for peripheral data types. Overall, adding
a new peripheral was particularly cumbersome and extremely error-prone. Finally, there was no
separation of concerns whatsoever.

A new modular code architecture for peripherals was introduced to solve the problems de-
scribed above. It aims to remove peripheral-specific code from mTask core and simulator modules.
In this architecture, each peripheral should be defined in its own module. Its type class, ADTs,
bytecode encodings and view instances are defined in that same module. The simulator does
not have any peripheral-specific code. Instead of explicit fields for each peripheral, the simulator
state record (SimState) contains a list of Peripheral. This new data type is a wrapper around
every mTask peripheral. Its definition can be seen in Listing 6.4.

:: Peripheral = E.e: Peripheral e & peripheral e

class peripheral e | iTask e where
processInst :: BC e � State SimState (e,Bool)

Listing 6.4: The Peripheral class

The peripheral class was created to enable the removal of peripheral-specific code from the
simulator interpreter. Its only function, processInst defines how a peripheral should interpret
bytecode instructions (BC). Naturally, a peripheral should only interpret instructions that are
relevant to it. The simulator interpreter executes one instruction at a time. If an instruction be-
longs to mTask’s core instruction set (excluding peripheral instructions), the interpreter executes
it immediately. If the instruction does not belong to the core instruction set, it is assumed to be
a peripheral instruction and it is presented to all simulator peripherals using the processInst
function. Once a peripheral responds to an instruction (represented by the Bool on processInst
returned value), the interpreter considers the instruction executed and stops looking for a peri-
pheral to execute it. If no peripheral executes the instruction, an error (”instruction unknown”)
is thrown.

34 CHAPTER 6. APPLICATION DEVELOPMENT

The addition of new bytecode instructions remains outside of the peripheral modules. Al-
though technically it is possible to extend the bytecode data type (BC) across separate modules,
the amount of work necessary to do so outweighs the benefits it could bring. Currently, BC’s in-
stance of the iTask type class is automatically derived. Clean can not automatically derive type
classes of extended types. Therefore, if BC was extended, an instance of iTasks type class would
have to be manually derived. Doing so would bring peripheral-specific code back to language
core modules, going against the intend that drove the change to begin with.

The development that followed the changes described above proved that the separation of
concerns regarding peripheral code improved mTask. Peripherals were added faster, with less
code changes and less errors. Additionally, code maintainability increased substantially. Since
peripheral code lays mostly in the same module, small changes can be performed faster and safer.

6.2.3 New Peripherals
Previously, the interpreted mTask supported the following peripherals: LEDs, LCD displays (for
displaying numbers only), analog and digital pins. The standard Autohouse tasks required new
peripheral support. The following peripherals were added to mTask: DHT22 temperature and
humidity sensor, HCSR04 ultrasonic sensor, digital light sensor, Grove analog light sensor (P)
V1.1, PIR and servo.

The digital light sensor, the Grove analog light sensor and the PIR did not require an external
library to be used. Their data pin is connected to board pins and their values can be read using
Arduino standard functions. An additional library was required to interface with the servo. The
Arduino Servo library6 was used. An additional library was also required to interface with the
DHT22 sensor. Although there are libraries available out there, I decided to implement a small
and simple one just for mTask: DHTino7. This choice was motivated by the limited amount of
flash memory (32 KB) on the Arduino Uno. Existing libraries support many different sensors
and have many features that would not be used by mTask. As a consequence, these libraries
would take too much flash memory space. Guided by the same motivation, the Ultrino8 library
was created to interface with the HCSR04 ultrasonic sensor.

6.2.4 Device Requirements
Some tasks rely on certain peripherals to execute. For example, a task that regulates room
temperature relies on a temperature sensor. Despite that, mTask did not provide a mechanism
to determine whether a task is compatible with a device. The Requirements view was created
to bring this feature to mTask. Its definition can be seen in Listing 6.5. Requirement is a
type constructor with two phantom type variables: a and b [15]. These type variables are
required by mTask type classes. Requirement is a wrapper around the device specification type
MTaskDeviceSpec.

Given a mTask construct, this view will return the minimum device specification necessary to
support that construct. This information can be used to determine whether a device matches the
minimum specification for a task and therefore, if it is compatible with it. The match function
(seen in Listing 6.5) does exactly that. Given an mTask program and a Maybe MTaskDeviceSpec,
it yields whether the device and program are compatible.

6Arduino Servo Library. Available at https://www.arduino.cc/en/reference/servo. Accessed on September
10th 2018.

7DHTino on GitHub. Available at https://github.com/matheusamazonas/DHTino. Accessed on September
10th 2018.

8Ultrino on GitHub. Available at https://github.com/matheusamazonas/Ultrino. Accessed on September
10th 2018.

https://www.arduino.cc/en/reference/servo
https://github.com/matheusamazonas/DHTino
https://github.com/matheusamazonas/Ultrino

6.2. CHANGES TO MTASK 35

:: Requirements a b = Req MTaskDeviceSpec

match :: (Main (Requirements a b)) MTaskDeviceSpec � Bool

instance arith Requirements
instance UserLED Requirements

Listing 6.5: The Requirements view

Instances of mTask classes (including peripheral classes) are defined for Requirement. There-
fore, given a mTask task, an application can filter the available devices based on whether they
are compatible with it. The opposite is also possible: given a device, an application can filter
tasks based on whether they are compatible with it.

6.2.5 Device Disconnection
By design, Autohouse should be robust regarding device disconnection (Section 5.4). Ideally, the
system would detect a device disconnection and migrate the device’s tasks to another suitable
device. There were two challenges to tackle in order to implement this feature.

First, mTask does not recognize device disconnection for all of the device types it supports.
Simulators never get disconnected. TCP devices throw an iTasks error when a disconnection
is identified. This error is not caught by mTask and propagates upwards. Serial devices kill
the application when disconnected. The library used by mTask to connect to Serial devices
(CleanSerial9) halts execution when a device is disconnected.

In order to detect device disconnection, mTask had to be modified. If the device commu-
nication fails, the channelSync task (Section 4.2.5) should throw an exception10. TCP devices
already throw an exception when communication fails and therefore require no change. Although
simulators never disconnect from the system, simulating a disconnection would benefit testing.
Hence, simulators were modified to support intentional disconnection. CleanSerial was modified
to support device disconnection recognition.

Second, even if mTask recognizes device disconnection, it still can not communicate it to
Autohouse. Ideally, mTask would communicate device disconnection through an error handler
that would be provided by the application. Thus, the application would decide what task to
perform in case of a disconnection. As seen in Section 4.2.5, the mTask library provides a single
function to connect with a device: withDevice. This function is responsible (besides other tasks)
to manage the connection to the device and therefore was the perfect place to insert an exception
handler. An exception handler is a task that takes an error String as input. Listing 6.6 displays
the type signature of the original withDevice along with its new version, named withDevice’
here. If the application using mTask does not want to handle connection errors, the iTasks throw
function can be used as the error handler. Doing so would propagate the exception upwards,
emulating the behavior of withDevice.

withDevice :: a (MTaskDevice � Task b) � Task b | channelSync a

withDevice’ :: a (MTaskDevice � Task b) (String � Task ()) � Task b | channelSync a

9CleanSerial on GitLab. Available at git@gitlab.science.ru.nl:mlubbers/CleanSerial.git. Accessed on
Semtember 8th 2018

10An iTasks task yields either a value or an exception. The iTasks standard library provides functions to create
and handle exceptions.

git@gitlab.science.ru.nl:mlubbers/CleanSerial.git

36 CHAPTER 6. APPLICATION DEVELOPMENT

throw :: e � Task a | iTask a & iTask e & toString e

Listing 6.6: Change in mTask to support a device disconnection handler

Consequently, mTask recognizes and provides an exception handler for device disconnection.
Autohouse uses this feature to detect unit disconnection and thus automatically migrate tasks
from the disconnected device to a suitable one.

6.2.6 Simulator Improvements
The simulator (Section 4.2.4) proved to be an essential tool during the development of Autohouse.
Although, it was clear that it could be improved to ease debugging and testing of the application.

Sometimes, the developer might want to debug a task and inspect it closely. The simulator’s
manual mode is adequate for such usage, but it might be a bit cumbersome to use. Specially
with large tasks, stepping over each program instruction becomes a rather tedious and inefficient
process. With that in mind, the simulator was extended to support breakpoints on bytecode
instructions. Tools to add and to step over breakpoints were added to the simulator UI. When
executing a task, the simulator goes through its bytecode instructions, checking if there are
breakpoints on each instruction before executing it. If an instruction has a breakpoint, execution
waits for user input (by clicking on ”step over”) to continue. At any point, the user is able to
edit breakpoints.

The ability to simulate peripheral values is crucial for program testing in mTask. Tasks often
rely on peripheral values and therefore can only be thoroughly tested if peripheral values can be
simulated. Although, the simulator did not have such feature. The development of Autohouse
showed how necessary this feature is for mTask development. Hence, simulation of peripheral
values was incorporated into the simulator. Values can be manually set via the simulator UI,
similarly to breakpoints.

6.3 Limitations of mTask
Some of the limitations of mTask that surfaced during the development of Autohouse were not
overcome. First, SDSs can not be removed from a device. There is no message in mTask’s
communication protocol (Section 4.2.2) to request SDS deletion. Since an SDS is not bound to
a task, once it is sent to a device, it lives there indefinitely. As a consequence, a device can
accumulate unused SDSs over time, possibly filling the device’s memory with dangling SDSs.
Ideally, SDSs would always be bound to a task. Thus, they would be removed along with its
task, eliminating dangling SDSs.

Second, there is a communication loop on SDS updates. The mTask library automatically
synchronizes SDSs between server and devices. Whenever a device publishes an SDS value, a
message is sent to the server, which updates the actual SDS. Also, the server observes an SDS
and whenever it is modified, it sends an update message to every device that uses that SDS.
Hence, the server ensures SDS synchronization. A problem arises because the server is not aware
of who is updating an SDS. Therefore, it might send an update message to the same device that
published the SDS value, creating a communication loop. This behavior is not desirable because
it generates unnecessary communication between the server and the devices. Additionally, it
might create unexpected behavior. Ideally, the server would identify who is updating the SDS
and avoid sending an update message to the device that trigerred it.

Additionally, mTask does not communicate whether a task sent to a device was acknowledged.
Ideally, a call to liftmTask would communicate task acknowledgment using a callback handler
(similarly to the connection error handler in Section 6.2.5). The application might want to wait

6.4. TASK MIGRATION 37

for the task acknowledgment to continue. For example, Autohouse could wait for a task acknow-
ledgment to store the task data in the unit SDS. Since it can not detect task acknowledgment,
it stores the task data before actually sending the task. As a consequence, if a task fails to be
acknowledged, an invalid task will live in the device’s task list.

Finally, mTask does not support floating-point arithmetic. Some sensors data (e.g. DHT22
temperature and humidity sensor) is represented using floating-points and could not be directly
translated into mTask bytecode values. As a workaround, the Arduino client uses integers to
represent floating-points, with a precision of two decimals.

6.4 Task Migration
In case of device disconnection, the application should migrate the unit’s tasks to another suit-
able one. The mTask library offers means to connect and send task to devices, but not to
manage them. The application using mTask is responsible for device management. Therefore,
automatic task migration was implemented entirely in Autohouse and required no changes to
mTask whatsoever.

First, the feature behavior was defined. Although automatic task migration might be helpful,
not all tasks should be automatically migrated. For example, some tasks that are suitable for
a hallway unit (e.g. motion-activated light switch) might not be suitable for a bedroom unit.
Therefore, different migration strategies were created. These strategies are represented in the
Migration ADT, seen in Listing 6.7.

:: Migration = DoNotMigrate | SameRoom | AnyRoom

Listing 6.7: Task migration strategies of Autohouse

Tasks with DoNotMigrate migration strategy never migrate to another unit. Tasks with the
SameRoom strategy migrate only to units within the same room of its original unit. Tasks with
AnyRoom strategy migrate to any other unit in the smarthome. When a task is being migrated,
other units are checked for compatibility (based on the task’s strategy, following no particular
order) and once a compatible unit is found, the task is sent to it. If no compatible unit is found,
the task is not migrated. The Autohouse user is responsible for determining a task’s migration
strategy when sending it to a unit.

The application has to save enough task data to migrate a task in case of a device disconnec-
tion. The mTask’s liftmTask function (Section 4.2.5) is used to send tasks to devices. Besides
the device itself, this function takes a task interval and an mTask task as input. Therefore, this
is all the information the application needs to send a task to a device. Autohouse’s default tasks
have a unique id that can be used to retrieve the task from the default task list. Thus, the
application should only need to store the task index and its interval (MTaskInterval) in order
to migrate it.

But storing the task id and interval is not enough. Some Autohouse tasks require user-
provided arguments to work. For example, a user must provide an initial target temperature to
a thermostat task before sending it to a device. If such a task is being migrated, the application
should be able to restore the task arguments as well. Autohouse stores task arguments along with
the task index and interval. All the information necessary to migrate an Autohouse program
lays in the ProgramInstance data type, seen on Listing 6.8.

:: ProgramInstance = { pIx :: Int,
pArgs :: [Dynamic],
pInt :: MTaskInterval,

38 CHAPTER 6. APPLICATION DEVELOPMENT

pMig :: Migration }

Listing 6.8: Task migration data

A unit contains a list of ProgramInstances. Each list element represents one task running on
the unit and can be used to migrate its respective task to a new device. If a unit disconnects, the
application goes through the unit’s ProgramInstance list and migrates the tasks accordingly.
Automatic task migration was tested using simulators and physical devices and it worked as
expected.

Chapter 7

Related Work

7.1 mTask
Recent research has been conducted on mTask. A new, task-based version of it has been pro-
posed [13]. On this version, the imperative language has been replaced by a functional one. This
new version was not used during the research reported in this document because its implement-
ation was not available on time.

The usage of programming languages to interface with microcontrollers has been a subject
of research. Firmata1 is a protocol to control microcontrollers. Its messages follow the MIDI
message format and model mostly commands on analog and digital input and output pins.
There is a client-side implementation for the Arduino2 and host-side implementations for many
programming languages, including a Haskell implementation to communicate with Arduinos
called hArduino3. Since Firmata is a protocol and not a programming language, full applications
can not be built using Firmata solely. Other tools are built on top of it.

The Haskino library enables Arduino programming using Haskell [11]. The library is available
in two different flavors. The first one is based on hArduino (and consequently, on Firmata) and
requires the Arduino to maintain a serial connection with the host. On this approach, most
of the program evaluation is executed on the host and only I/O commands run on the client.
The second approach drops Firmata and uses its own communication protocol. The client is
more independent and can execute more elaborate commands, including control flow constructs.
In contrast with the first approach, it presents a lower communication overhead. In addition,
programs can be written to the Arduino’s EEPROM, allowing standalone execution. When
compared to mTask, both flavors of Haskino depend heavily on the server.

Some research has been made on generating C/C++ code for microcontrollers from high
level languages. Ivory is an EDSL embedded into Haskell that generates safe embedded C
code [12, 8]. By design, the generated code is memory safe and free from common errors and
undefined behaviors. It uses Haskell’s type system (with some GHC extensions) to avoid errors
like array indexing out of bounds, main loop function with return statements and dangling
pointers. Additionally, it prohibits (by design) some standard C features that might generate
unsafe code. Ivory was used on the development of the SMACCPilot, a high-assurance autopilot
system for quadcopter Unmanned Air Vehicles (UAV). Unlike mTask, Ivory does not support

1Firmata Protocol Documentation. Available at https://github.com/firmata/protocol. Accessed on August
10th 2018.

2Firmara Arduino. Available at https://github.com/firmata/arduino. Accessed on August 10th 2018.
3hArduino. Available at http://leventerkok.github.io/hArduino. Accessed on August 10th 2018.

39

https://github.com/firmata/protocol
https://github.com/firmata/arduino
http://leventerkok.github.io/hArduino

40 CHAPTER 7. RELATED WORK

dynamic uploading of new tasks.
The frp-arduino library4 implements the Functional Reactive Programming (FRP) paradigm

as an EDSL embedded in Haskell. Programs in the EDSL can be compiled to Arduino C code
which can be uploaded to Arduino boards. Juniper5 is another FRP language for the Arduino.
It is a standalone programming language that transpiles to Arduino C++.

Additionally, some programming language interpreters were ported to microcontrollers. Es-
pruino6 is a JavaScript interpreter for microcontrollers. It officially supports only proprietary
boards but other microcontrollers such as the ESP8266 and the members of the STM32 family
are supported by the community. Due to hardware limitations, none of the Arduino boards are
supported. Espruino’s official website lists many projects that were built using it, including home
automation applications.

Micropython7 is a lean implementation of the Python interpreter and parts of its standard
library for microcontrollers. Its main target device is the proprietary pyboard. Given that it
requires at least 16KB of RAM, it is not compatible with most Arduino boards. It is compatible
with microcontrollers of the STM32 family. Many projects (including home automation) were
developed using Micropython and pyboards.

Finally, the programming of microcontrollers dynamically (without the need to plug it to a
computer) is a well known practice. For example, the ESP82668 Wi-Fi module supports Over-
the-Air (OTA) programming. The Arduino Uno Wi-Fi9 is a version of the Arduino Uno board
that contains an ESP8266 module and supports OTA programming natively via the Arduino IDE.
It is important to note that although OTA enables dynamic programming of microcontrollers,
it differs from mTask’s dynamicity. On OTA programming, the device memory is reset when a
new program is loaded. On the dynamic version of mTask, the device’s memory and the tasks
running on it are unaffected.

7.2 Autohouse
Autohouse is a home automation application built with the intent to assess mTask’s capabilities
and was not meant to be commercialized. Therefore, when compared to existing commercial
home automation systems, mTask supports less platforms, offers less features and does not
focus on some aspects (e.g. security, performance, user experience). Although, there are some
fundamental differences between these applications and Autohouse. A brief comparison follows.

The openHAB10 is an open-source home automation integration platform. Instead of con-
trolling devices running a custom firmware, openHAB integrates existing automation system
from different manufacturers. Therefore, Autohouse and openHAB operate in different abstrac-
tion levels.

Home Assistant11 is an open-source automation system that supports many automation plat-
forms including Arduino. Users can configure automation tasks using YAML files. Although it

4FRP on Arduino. Available at https://github.com/frp-arduino/frp-arduino. Accessed on August 10th
2018.

5Juniper Programming Language. Available at http://www.juniper-lang.org/index.html. Accessed on Au-
gust 11th 2018.

6Espruino. Available at https://www.espruino.com. Accessed on August 10th 2018.
7Micropytohn. Available at https://micropython.org. Accessed on August 10th 2018.
8ESP8266 Overview. Available at https://www.espressif.com/en/products/hardware/esp8266ex/overview.

Accessed at August 11th 2018.
9Arduino Store - Arduino Uno Wi-Fi. Available at https://store.arduino.cc/arduino-uno-wifi. Accessed

on August 11th 2018.
10openHAB. Available at https://www.openhab.org. Accessed on September 19th 2018.
11Home Assistant. Available at https://www.home-assistant.io. Accessed on September 19th 2018.

https://github.com/frp-arduino/frp-arduino
http://www.juniper-lang.org/index.html
https://www.espruino.com
https://micropython.org
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://store.arduino.cc/arduino-uno-wifi
https://www.openhab.org
https://www.home-assistant.io

7.2. AUTOHOUSE 41

supports Arduino, the server uses Firmata protocol (Chapter 7) to control the devices. Therefore,
evaluation of automation tasks is performed on the server, not on the clients. As a consequence, if
the connection between server and clients fails, the devices stop performing tasks. In Autohouse,
devices keep executing tasks if communication is interrupted.

Blynk12 and Thinger.io 13 are IoT platforms in which devices (e.g. Arduino, Mbed, Raspberry
Pi14) can be controlled via iOS and Android apps. Unlike in Autohouse, new tasks can not be
sent to the devices dynamically.

As seen above, mTask’s microcontroller support and dynamic nature brings a set of features
to Autohouse that none of the analyzed home automation systems possesses.

12Blynk. Available at https://www.blynk.cc. Accessed on September 19th 2018.
13Thinger.io. Available at https://thinger.io. Accessed on September 19th 2018.
14Raspberry Pi. Available at https://www.raspberrypi.org. Accessed on September 19th 2018.

https://www.blynk.cc
https://thinger.io
https://www.raspberrypi.org

42 CHAPTER 7. RELATED WORK

Chapter 8

Conclusion

8.1 Discussion and Future Work

8.1.1 mTask

The Autohouse application was successfully developed using mTask, but some aspects still have
to be analyzed. The tests performed during development were limited to five Arduino boards
running a maximum of three simultaneous tasks for a maximum duration of one hour. It is
unknown how mTask performs running more than five simultaneous devices. Given that the
number of devices in IoT applications can escalate quickly, it is important to assess how mTask
escalates in regard to the number of connected devices. Similarly, given that IoT applications
often run continuously, it would be important to perform tests with tasks running for longer
periods of time. Another characteristic of IoT solutions is lower power consumption [21, 18,
22]. Although, no power consumption analysis of mTask applications was performed. Assessing
mTask’s power consumption, scalability and behavior over long periods is suggested as future
research.

Ideally, the limitations of mTask described in Section 6.3 should be eliminated. First, SDSs
and tasks should be sent in a bundle. Thus, they would be removed altogether, eliminating
dangling SDSs. Second, mTask would avoid sending update messages to the exact same device
which triggered the SDS update. Lastly, the mTask library would provide callbacks to signal
task acknowledgment. Solving these problems is also proposed as future research.

The Raspberry Pi1 is a compact ARM computer often used in IoT projects both as a device
and as a server. Since it is capable of running an iTasks core, it should be able to run an mTask
server [19]. Also, since the Pi hardware is Linux compatible, it might host an mTask POSIX
client. Testing with the Raspberry Pi is suggested as future research.

The mTask EDSL was created to bring IoT devices to the iTasks environment. Its language
is imperative and the system is not task-centred. Also, tasks cannot be combined as in iTasks,
limiting mTask’s expressiveness. Naturally iTasks and mTask differ on some aspects, but ideally,
the gap between them would be minimal, both in syntax and semantics. Current research
has been performed to bridge this gap. A functional, task-centred version of mTask has been
proposed [13]. Parallel and sequential task combinators were introduced, improving mTask’s
expressiveness. Due to time constraints, this version of mTask could not be used in this research.
Assessing the abilities of this new version of mTask is proposed as future research.

1Raspberry Pi. Available at https://www.raspberrypi.org. Accessed on September 19th 2018.

43

https://www.raspberrypi.org

44 CHAPTER 8. CONCLUSION

8.1.2 Autohouse
Although Autohouse is not the research focus, it would be interesting to extend the application
to push the boundaries of mTask.

Currently, devices have no information about what its peripherals represent. For example,
a servo can be used to control curtains or to lock a door. The user might know what which
peripheral represents when sending a new task to a device, but the migration algorithm does
not. As a consequence, a task might migrate to a compatible device with a peripheral that
controls a different object than the intended one. For example, a task that uses a servo to
automatically close curtains might migrate to a device that uses its servo to lock a door. Ideally,
the application user would attribute tags to its peripherals. The migration algorithm would take
that information into consideration when migrating tasks.

8.2 Conclusion
The research reported in this documented tested mTask’s ability to develop real-life IoT applic-
ations. The research question was tackled by example: the Autohouse application intended to
assess mTask’s capabilities. The application is a home automation system that allows users to
dynamically manage automation tasks running on devices spread across different rooms.

Limitations of mTask surfaced during the development of Autohouse. Some limitations were
overcome by changing the mTask and CleanSerial libraries. Task variables were added to the
language. Device disconnection recognition was implemented, allowing the application to auto-
matically migrate tasks when a device is lost. A new view was added to the EDSL which generates
minimum device requirements for a mTask task. This view can be used to filter available devices
based on whether they support a given task. Six new peripherals were added to the mTask
language and to the Arduino client. Peripheral code was restructured, easing the addition of
new peripherals, increasing code maintainability and bringing a better separation of concerns
between the language core constructs and peripheral constructs. Finally, the simulator for the
interpreted mTask was modified to support the setting of peripheral values and breakpoints,
which improved testing and debugging considerably.

Other limitations could not be overcome during this research. SDSs are never removed
from devices and live there indefinitely. There is an unwanted communication loop between
devices and server whenever a device publishes an SDS. The mTask library does not communicate
task acknowledgment. Although these limitations were not overcome, they did not stop the
development of Autohouse.

The mTask EDSL and library were successfully used to develop a real-life IoT application: the
home automation system Autohouse. Some of the limitations unearthed during the development
process were overcome and some remain. Finally, it is clear what the next steps to improve
mTask are.

Bibliography

[1] P. Achten, P. Koopman and R. Plasmeijer. “An Introduction to Task Oriented Program-
ming”. In: Central European Functional Programming School: 5th Summer School, CEFP
2013, Cluj-Napoca, Romania, July 8-20, 2013, Revised Selected Papers. Ed. by V. Zsók,
Z. Horváth and L. Csató. Cham, Switzerland: Springer International Publishing, 2015,
pp. 187–245.

[2] Arduino - Home. url: https://www.arduino.cc (visited on 06/08/2018).
[3] T. H. Brus, M. C. J. D. van Eekelen, M. O. van Leer and M. J. Plasmeijer. “Clean —

A language for functional graph rewriting”. In: Functional Programming Languages and
Computer Architecture. Ed. by G. Kahn. Berlin, Heidelberg: Springer, 1987, pp. 364–384.

[4] J. Carette, O. Kiselyov and C.-c. Shan. “Finally Tagless, Partially Evaluated: Tagless
Staged Interpreters for Simpler Typed Languages”. In: Journal of Functional Program-
ming 19.5 (Sept. 2009), pp. 509–543.

[5] J. Cheney and R. Hinze. First-class phantom types. Tech. rep. Cornell University, 2003.
[6] J. van Diggelen, W. Post, M. Rakhorst, R. Plasmeijer and W. van Staal. “Using Process-

Oriented Interfaces for Solving the Automation Paradox in Highly Automated Navy Ves-
sels”. In: Active Media Technology. Ed. by D. Ślȩzak, G. Schaefer, S. T. Vuong and Y.-S.
Kim. Cham, Switzerland: Springer International Publishing, 2014, pp. 442–452.

[7] L. Domoszlai, B. Lijnse and R. Plasmeijer. “Parametric Lenses: Change Notification for
Bidirectional Lenses”. In: Proceedings of the 26nd 2014 International Symposium on Im-
plementation and Application of Functional Languages. IFL ’14. ACM, 2014, 9:1–9:11.

[8] T. Elliott et al. “Guilt Free Ivory”. In: Proceedings of the 2015 ACM SIGPLAN Symposium
on Haskell. Haskell ’15. Vancouver, BC, Canada: ACM, 2015, pp. 189–200. isbn: 978-1-
4503-3808-0.

[9] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce and A. Schmitt. “Combinators for
Bidirectional Tree Transformations: A Linguistic Approach to the View-update Problem”.
In: ACM Trans. Program. Lang. Syst. 29.3 (May 2007).

[10] Gartner Says 8.4 Billion Connected ”Things” Will Be in Use in 2017, Up 31 Percent From
2016. 2017. url: https://www.gartner.com/en/newsroom/press-releases/2017-02-
07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-
percent-from-2016 (visited on 04/08/2018).

[11] M. Grebe and A. Gill. “Haskino: A Remote Monad for Programming the Arduino”. In:
Practical Aspects of Declarative Languages. Ed. by M. Gavanelli and J. Reppy. Cham,
Switzerland: Springer International Publishing, 2016, pp. 153–168.

[12] P. C. Hickey, L. Pike, T. Elliott, J. Bielman and J. Launchbury. “Building Embedded
Systems with Embedded DSLs”. In: SIGPLAN Not. 49.9 (Aug. 2014), pp. 3–9.

45

https://www.arduino.cc
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016

46 BIBLIOGRAPHY

[13] P. Koopman, M. Lubbers and R. Plasmeijer. “A Task-Based DSL for Microcomputers”. In:
Proceedings of the Real World Domain Specific Languages Workshop 2018. Vienna, Austria:
ACM, 2018, 4:1–4:11.

[14] P. Koopman and R. Plasmeijer. “A Shallow Embedded Type Safe Extendable DSL for the
Arduino”. In: Trends in Functional Programming. Ed. by M. Serrano and J. Hage. TFP
2015. Cham, Switzerland: Springer International Publishing, 2016, pp. 104–123.

[15] D. Leijen and E. Meijer. “Domain Specific Embedded Compilers”. In: Proceedings of the
2Nd Conference on Domain-specific Languages. DSL ’99. Austin, Texas, USA: ACM, 1999,
pp. 109–122.

[16] B. Lijnse, J. M. Jansen and R. Plasmeijer. “Incidone: A Task-Oriented Incident Coordin-
ation Tool”. In: Proceedings of the 9th International Conference on Information Systems
for Crisis Response and Management. ISCRAM’12. Vancouver, BC, Canada: Simon Fraser
University, 2012.

[17] M. Lubbers. “Task Oriented Programming and the Internet of Things”. Master’s thesis.
Nijmegen: Radboud University, 2017.

[18] D. Miorandi, S. Sicari, F. D. Pellegrini and I. Chlamtac. “Internet of things: Vision, ap-
plications and research challenges”. In: Ad Hoc Networks 10.7 (2012), pp. 1497–1516.

[19] A. Oortgiese, J. van Groningen, P. Achten and R. Plasmeijer. “A Distributed Dynamic
Architecture for Task Oriented Programming”. In: Proceedings of the 29th Symposium
on the Implementation and Application of Functional Programming Languages. IFL 2017.
Bristol, United Kingdom: ACM, 2017, 7:1–7:12.

[20] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten and P. Koopman. “Task-oriented Program-
ming in a Pure Functional Language”. In: Proceedings of the 14th Symposium on Principles
and Practice of Declarative Programming. Leuven, Belgium: ACM, 2012, pp. 195–206.

[21] P. Ray. “A survey on Internet of Things architectures”. In: Journal of King Saud University
- Computer and Information Sciences (2016).

[22] L. Sanchez et al. “SmartSantander: IoT experimentation over a smart city testbed”. In:
Computer Networks 61 (2014), pp. 217–238.

Glossary

Android Linux-based mobile operating system developed by Google.

Arduino An open-source electronics prototyping platform.

Autohouse Home automation application developed using mTask and iTasks.

C A general purpose, structured imperative language.

C++ A general purpose, object-oriented imperative language.

Clean A general purpose, pure and lazy functional programming language.

iOS Operating system created by Apple to its proprietary hardware (smartphones, tables) .

iTasks A TOP implementation hosted in Clean.

Mbed Platform and operating system for IoT devices based on ARM Cortex-M microcontrollers.

Microcontroller A compact, integrated circuit containing a small computer, plural=microcontrollers.

mTask An EDSL embedded in Clean to control IoT devices in iTasks.

servo Servomotor. A rotary motor with precise control of angular position.

YAML Human friendly data serialization language.

47

48 Glossary

Acronyms

ADT Algebraic Data Type.

ARM Advanced RISC Machine.

DSL Domain Specific Language.

EDSL Embedded Domain Specific Language.

EEPROM Electrically Erasable Programmable Read-Only Memory.

FRP Functional Reactive Programming.

GADT Generalized Algebraic Data Type.

GHC Glasgow Haskell Compiler.

GPL General Purpose Language.

HTML Hypertext Markup Language.

IDE Integrated Development Environment.

IoT Internet of Things.

IP Internet Protocol.

LAN Local Area Network.

LCD Liquid Crystal Display.

LED Light-Emitting Diode.

MIDI Musical Instrument Digital Interface.

OTA Over-the-Air.

PIR Passive Infrared Sensor.

POSIX Portable Operating System Interface.

49

50 Acronyms

RISC Reduced Instruction Set Computer.

SDS Shared Data Source.

SPP Serial Port Protocol.

TCP Transmission Control Protocol.

TOP Task Oriented Programming.

UAV Unmanned Air Vehicles.

UI User Interface.

USB Universal Serial Bus.

VHDL VHSIC Hardware Description Language.

VHSIC Very High Speed Integrated Circuit.

List of Listings

2.1 A simple deeply EDSL and its views . 3
2.2 A simple shallowly EDSL . 4
2.3 A simple class-based shallowly EDSL . 4
2.4 A simple class-based shallowly EDSL with compile time variable checks 5
3.1 iTasks basic interaction functions . 8
3.2 Example of basic iTasks interaction functions . 8
3.3 Sequential combinators . 9
3.4 Parallel combinators . 10
3.5 Shared Data Sources definitions . 10
3.6 SDS interactive tasks . 11
4.1 A mTask class . 13
4.2 mTask construction roles . 13
4.3 mTask expression classes . 14
4.4 mTask control flow classes . 14
4.5 mTask SDS classes . 15
4.6 mTask I/O classes . 15
4.7 Communication protocol: sent messages . 17
4.8 Communication protocol: received messages . 17
4.9 Device interaction functions . 18
4.10 Examples of mTask tasks . 19
6.1 The vari class . 31
6.2 Example of the usage of variables in mTask . 32
6.3 Change in mTask’s communication protocol to accommodate task variables . . . 32
6.4 The Peripheral class . 33
6.5 The Requirements view . 35
6.6 Change in mTask to support a device disconnection handler 35
6.7 Task migration strategies of Autohouse . 37
6.8 Task migration data . 37

51

List of Figures

3.1 Possible states of a TaskValue . 7
3.2 The visual representation of the basic iTasks interaction functions 9

5.1 Autohouse Architecture . 23

52

	Abstract
	Acknowledgements
	Introduction
	Introduction
	Research Question
	Report Structure

	Embedded Domain Specific Languages
	Deep Embedding
	Shallow Embedding
	Shallow Embedding with Type Classes

	Task Oriented Programming
	iTasks
	Interaction
	Combinators
	Sequential Combinators
	Parallel Combinators

	Shared Data Sources

	The mTask EDSL
	The Language
	Overview of the Classes
	Overview of the Views

	Interpreted mTask
	Motivation
	Communication Protocol
	The Client
	The Simulator
	Devices

	Examples

	The Application
	Selection Criteria
	Home Automation
	Application Description
	Architecture
	Tasks
	Devices
	Sensors
	Actuators

	Application Analysis

	Application Development
	Development Overview
	Application Architecture
	Using the Simulator
	Device Communication
	Device Deployment

	Changes to mTask
	Variables
	Peripheral Code
	New Peripherals
	Device Requirements
	Device Disconnection
	Simulator Improvements

	Limitations of mTask
	Task Migration

	Related Work
	mTask
	Autohouse

	Conclusion
	Discussion and Future Work
	mTask
	Autohouse

	Conclusion

	Bibliography
	Glossary
	Acronyms
	List of Lists

