
Bachelor thesis
Computing Science

Radboud University

mTask semantics and its
comparison to TopHat

Author:
Elina Antonova
s1057069

Supervisor:
dr. Pieter W.M. Koopman

pieter@cs.ru.nl

Daily supervisor:
Mart Lubbers MSc

mart@cs.ru.nl

Second reader:
dr. Peter M. Achten
p.achten@cs.ru.nl

July 12, 2022

Abstract

Task-Oriented Programming (TOP) is a relatively new programming para-
digm designed to make the process of developing multi-purpose applications
easier and faster. There are several TOP implementations. The first of them
is iTask, a multi-purpose language embedded in the functional programming
language Clean. As the result of the growing number and popularity of In-
ternet of Things (IoT) systems, another TOP language—mTask—emerged
for programming such systems. The mTask system is implemented in Clean,
which enables the connection of iTask and mTask applications; creating dis-
tributed applications using internet forms with IoT systems. Even though
the mTask language uses the same programming paradigm as iTask and is
implemented in the same language, mTask is easier to reason about as it
is less complex. Language formal reasoning plays an important role in its
theorisation and the proof of the correctness of its implementation. TopHat
(T̂OP) is the first TOP implementation that is fully formalized and has

well-defined operational semantics. The way T̂OP ’s syntax and semantics
are described is used in this thesis as basis for formalising mTask. We de-
scribe the mTask language syntax, types and typing rules, and the language
evaluation, normalisation and interaction with the system using operational
semantics. T̂OP and mTask semantics turned out to differ more than ex-
pected. Compared to T̂OP ’s input-driven semantics, mTask’s semantics is a
continuously rewriting system that does not need any input for the rewriting
process. The way user input is handled also differs due to the structure of
the tasks that deal with the values. In addition, mTask has a notion of sta-
bility that is lacking in T̂OP . Stability of task values has to be considered
when the rules for the mTask semantics are created.

Acknowledgements

This research would not have happened without the help and support
from many people. I would like to express my sincere appreciation to my
first supervisor, Pieter Koopman, who provided me with this interesting
topic and guided through the whole process of the thesis writing. I wish
to express my thanks to my daily supervisor, Mart Lubbers, who always
provided an extensive feedback and tips how to improve my work. Along
with my first supervisor, he helped me with research when I was stuck.
With all this great supervision, the process of bachelor thesis research was
a pleasant experience.

I would also like to thank Bachelor Thesis course’s professors, Peter
Achten and Perry Groot, for providing all the necessary knowledge about
the thesis writing, planning and presentation, which made the process easier
and more structured. In addition, I would like to thank Peter Achten for
his input as a second reader.

Additionally, I would like to thank my loved ones and friends for helping
me and providing support, which helped to stay on track and finish this
research. Their feedback was also valuable for improving some written parts
of the thesis.

1

Contents

1 Introduction 4
1.1 IoT and mTask . 5
1.2 Research and motivation . 5
1.3 Thesis structure . 6

2 Task-Oriented Programming 7
2.1 iTask . 8
2.2 mTask . 9
2.3 TopHat . 9

3 Semantics 12
3.1 Formal semantics . 12
3.2 TopHat semantics . 12

3.2.1 Syntax of TopHat . 13
3.2.2 Semantics of TopHat 16
3.2.3 Reference to Soundness and completeness of inputs . . 26

4 mTask semantics 27
4.1 Syntax . 27

4.1.1 Constants and binary operators 27
4.1.2 Expressions . 28
4.1.3 Pretasks . 29
4.1.4 Types and typing rules 30

4.2 Task language . 35
4.2.1 Sensors . 35
4.2.2 Shared Data Source 35
4.2.3 Return, unstable . 36
4.2.4 Combinators and continuations 36

4.3 Semantics . 37
4.3.1 Evaluation . 39
4.3.2 Task fail and observation 43
4.3.3 Normalisation . 45
4.3.4 Striding . 46

2

4.3.5 Interaction . 48
4.3.6 Handling . 49

4.4 TopHat and mTask differences 50

5 Discussion and conclusion 51
5.1 Discussion and future work 51

5.1.1 Delay and repeat . 51
5.1.2 Type preservation . 51
5.1.3 Soundness and completeness 52
5.1.4 Verification . 52

5.2 Conclusion . 52

A Appendix 57
A.1 Possible inputs function in TopHat 57
A.2 Possible inputs function in mTask 58

3

Chapter 1

Introduction

Every day, people do all kinds of activities: they go to work, their work time
consists of smaller jobs, they make food, eat food, sleep and do many other
small activities. Such activities can be called tasks, and they describe an
abstract unit of work. Such tasks are often done sequentially: a person wakes
up, showers, makes coffee, drinks coffee, gets ready, leaves for work, etc. But
sometimes coffee and breakfast are consumed at the same time, which means
that these two tasks are done in parallel. Such tasks sequence or, simply,
the workflow are an interconnected set of tasks, that create people’s daily
schedules.

Similar workflows are used in machines. When programs are divided
into smaller tasks that are connected sequentially or parallely, it creates an
interesting workflow that can be used in programming. This programming
paradigm does not fall under imperative, object-oriented or functional pro-
gramming, so a new paradigm was designed for the creation of such workflow
programming—Task-Oriented Programming (TOP) [1].

The TOP paradigm is a relatively new concept created for the develop-
ment of interactive, collaborative and distributed applications. It focuses on
modelling collaboration patterns according to the needs of users to interact
and share information. The TOP paradigm makes use of the definitions of
a task, which is an abstract definition of a unit of work, and a combinator,
which is used to create the workflow of the program by connecting tasks
together [2]. Initially the paradigm was used for internet forms, but lately
TOP found its use in IoT systems programming.

The iTask language is the first TOP language embedded in the Clean
programming language. It is used for developing the real-world applica-
tions [3]. The language is too complex to define its formal semantics, as
such it merely exists in implementation [1]. Moreover, iTask is considered
to be very tightly integrated with Clean, making the essence of the TOP
concept unclear. Thus, there was a need to create something to formalise the
TOP paradigm, giving a start to the development of a new TOP language—

4

TopHat (T̂OP) [4].

T̂OP is a TOP language that is mathematically formalised. In T̂OP , the
task layer is separated from the host language syntactically and semantically
to give a better overview of the TOP paradigm [4]. Operational semantics

for the T̂OP was fully formalised and its soundness and correctness was
proven [4].

1.1 IoT and mTask

The number of devices connected to the internet is continuously growing,
and it is predicted that the number of such devices will reach 83 billion by
the year 2024 [5]. This network of connected devices is called Internet of
Things (IoT), and it entails a distributed network of devices that interact
with each other, end users and the real world.

An IoT device is used as an umbrella term for all kinds of devices from
smartphones to microcontrollers, among which the computing capacity can
differ tenfolds. Thus, programming languages and technologies that are used
for programming applications for computers and servers are often not suit-
able for programming resource-restricted IoT devices, which require more
light-weight approaches. This is the place where mTask comes in handy and
helps to create distributed and low-cost TOP applications [6].

The mTask language is used for programming IoT devices and makes use
of the TOP paradigm. It is currently still in development, but already used
for programming micro controllers [7]. However, its formal foundation was
never fully defined and there exists a knowledge gap in the formalisation of
the language. Thus, defining a formal foundation of mTask language is the
purpose of this bachelor thesis.

1.2 Research and motivation

This bachelor thesis focuses on overviewing the operational semantics of
T̂OP and creating an operational semantics for mTask. For the overview
of the T̂OP semantics, the article TopHat: A formal foundation for task-
oriented programming written by Tim Steenvoorden, Nico Naus and Mar-
cus Klinik [4] was used. The semantics of mTask are defined according to
the TopHat operational semantics structure described above with focus on
mTask’s needs and peculiarities. The difference between the semantics of
T̂OP and mTask becomes clear when T̂OP semantics is tried to be applied
to the mTask language, and the changes that are made to it indicate how
much the semantics of the languages differ.

The research question that is central to this thesis is: Can we define
the semantics of mTask based on semantics of TopHat (T̂OP)? The way
rules for types and semantics are defined, the different levels of semantics

5

and other key ideas of how to create semantics are taken from the T̂OP
approach described in the foundation paper [4] and applied on mTask.

Moreover, a formal definition of the mTask language has never been
created before and its formalisation can help with the further development
and improvement of the language.

1.3 Thesis structure

The following Chapter 2 introduces TOP paradigm and its languages. It
describes what the notions of tasks and combinators are and provides an
overview of three languages implementing the TOP paradigm: iTask, mTask
and T̂OP . Chapter 3 describes the semantics, what types of semantics exist
and provides a thorough description of the T̂OP language and its operational
semantics on the different levels: evaluation, normalisation and interaction.
Chapter 4 focuses on the syntax, typing rules and semantics of mTask. The
chapter fully focuses on the research question of this paper and describes the
mTask language and its host language, an enriched λ-calculus, constructs
and defines the semantics of mTask embedded in its host language. The
last chapter concludes the work, discusses the related work and provides an
overview of what can be done in the future to make the formal foundation
of mTask completer.

6

Chapter 2

Task-Oriented Programming

TOP is a programming paradigm that was developed for the construction
of interactive, distributed and multi-user applications. The TOP approach
was designed originally for internet forms, though, its architecture makes it
easy to create applications for a wide range of equipment: from computers
to IoT devices. TOP provides solutions for common jobs such as GUI de-
signing, connecting databases, and client-server communication. Moreover,
TOP applications are designed to be multi-user applications [2]. Thus, TOP
allows users to interact and share information using collaboration patterns.

TOP extends the host language programming paradigm with the defini-
tion of tasks. A task is an abstract description of a persistent unit of work
that has an observable typed value. Tasks can be independent or rely on the
results of other tasks. To interconnect tasks with each other, combinators
are used. A program is a set of tasks that are combined using combinators.
When a TOP framework executes the task, it has an opaque persistent state
and related tasks can observe the current value of the executed task in a
controlled way [8]. The observable value of a task can be in two different
states:

1. No value: the task has no value of the specified type. The task could
have made some progress, but the value might not be calculated yet
or the task might have some internal value which is unrelated to the
observable value.

2. Typed value: the task has achieved a value of the specified type.

Tasks can communicate using task values. However, in some collabora-
tion patterns they need to share data using Shared Data Sources (SDSs) [7].
An SDS is a typed abstract interface over any data. It can represent dif-
ferent data sources such as a file, chunk of memory, database or any other
data source that can be read, written and updated [8].

There are multiple ways users and systems cooperate with each other,
and this is reflected in the TOP using different task combinators [4]. Gener-

7

ally, there are two types of collaboration that are needed for more complex
patterns.

1. Sequential composition: tasks are executed one after another in
a sequence defined by the program. Often, the results of the previ-
ously executed tasks are used in the following tasks, but this is not
necessarily the case.

2. Parallel composition: a set of tasks is executed in parallel and task
values of these tasks can be accessed from the tasks in this set.

2.1 iTask

The iTask system is a TOP framework for programming distributed col-
laborative web applications that are suitable for modelling collaboration in
many domains [9]. iTask is a combinator language [2] and the TOP paradigm
grew from it. The iTask system is implemented as an Embedded Domain
Specific Language (EDSL) in Clean [2]. A compiled iTask program, which
embeds a TOP specification, is a multi-user distributed webserver that hosts
a ready-for-work user interface. The graphical user interface, serialization
and communication are automatically generated by iTask system.

Tasks in iTask are the first-class citizens, which means that they can
be both function arguments and function results. A task is implemented
as an event-driven stateful rewrite function, so when an event occurs, the
function is executed with the current state of the system with the event as
an argument. Such an execution changes the state of the system and results
in either a value or an exception. The resulting value includes the task value,
an update for the user interface and a modified state. The current state of
the task is the structure of the tasks and their combinators [3].

iTask task values are the same as in TOP, but typed values can be divided
into the following states:

1. Unstable value: the task has a value of the correct type, but it
can change after handling an event to a different value or even to no
observable value.

2. Stable value: the task has achieved a final result. If the value is
observed later, then it remains unchanged.

States of task values can change and the transitions of these states are
illustrated by the state diagram in Figure 2.1.

8

Figure 2.1: Task value state transition diagram.

2.2 mTask

Similarly to iTask, mTask is an EDSL designed for a specific domain and
embedded within Clean. The mTask language is a TOP language designed
to program low-cost and resource-restricted systems such as IoT systems [6].

IoT applications have a layered architecture: each layer is responsible
for a certain functionality, for example, data collection or representation.
Such an architecture makes the creation of these systems quite complex,
but combined with iTask, mTask solves this problem and allows to create
an entire IoT stack from a single specification. The mTask language is used
to program low-cost and resource restricted devices, whereas iTask is used
for programming multi-user and distributed applications [10]. The mTask
language is simpler and smaller compared to iTask due to its narrow domain,
which makes it more light-weight and programs can be run on devices with
2KiB of memory and on a slow 16 MHz processor [11]. Despite the differ-
ences, these languages are closely integrated and allow to share data with
each other using SDSs and run mTask programs as iTask tasks. Their im-
plementations are done in Clean allowing the use of the same programming
language and easier integration. Tasks in mTask and iTask have the notion
of stability for their values that can be stable or unstable. But compared
to iTask, tasks in mTask can only be second-class citizens: the tasks can be
the result of a function, but they cannot be arguments of the functions.

The mTask tasks are not evaluated in the host language, but the IoT
application running on the server transforms the task at run time into byte
code code and sends it to the IoT device. The run-time system, running on
this device, interprets the byte code and the resulting task is executed by
this system.

A more thorough description of the mTask language is done in Chapter 4.

2.3 TopHat

T̂OP is the first TOP language that was fully mathematically formalised.
The iTask language is practical in nature, but it is hard to reason about,
thus, T̂OP was created to fill this gap [1]. Nonetheless, T̂OP can be used
to create practical solutions to the programming problems.

9

T̂OP is a programming language that consists of two parts: the host
language and the task language. The task language is embedded in a simply-
typed λ-calculus, i.e. the host language. T̂OP programs are called tasks
and they consist of basic elements called editors that are combined using
combinators [12]. The T̂OP language does not allow recursion.

Editors are basic tasks that communicate with the outside world. They
are an abstraction over widgets in a Graphic User Interface (GUI): their
values are changed by users in a similar way as to how widgets are manipu-
lated in a GUI. The appearance of an editor, when generated from the task
specification, is influenced by its type. There are three different types of ed-
itors in T̂OP and we introduce them along with their evaluated semantical
representation:

1. Valued editor (□ v): the editor holds the value of the certain type
and users can only change its value, not the type.

2. Unvalued editor (⊠ τ): editor does not have a value, but can receive
a value of the certain type τ, turning it into the valued editor.

3. Shared editor (■ l): editor refers to a stored location, which is an
SDS. The observable value is the value stored in this location, which
can be changed by a new value received from the user.

The states of an editor and their transitions are depicted in Figure 2.2.

Figure 2.2: Editor value state transition diagram.

Before describing combinators, it is important to mention another basic
task. Fail () indicates a task that never has a value and never accepts
input. It does not belong to the category of editors or combinators, but it
plays a crucial role in indicating tasks that can fail in certain states.

Programmers can select a collaboration model that suits the users’ goals
best and, depending on that, there are different ways to pass task values
between tasks. Data flow can be alongside control flow, when a task value
is passed to the next sequential task; or it can be across the control flow,
when data is shared between simultaneous working tasks. There is also a
communication with the outside world (user), when data is entered into
the system through input events like “continue” button or user input. The
combinators are used to combine smaller tasks into larger tasks depending

10

on the collaboration type. The following combinators are available in T̂OP ,
where t indicates an evaluated task and e is an unevaluated expression:

1. Sequential combinators:

(a) Step (t ▶ e): as soon as the task t has a task value, it is passed to
the expression e. The expression is a function that takes the task
value as an argument and results in a new task. This combinator
is guarded and the successor task must not be the fail task . If
it is a failing task, the combinator continues waiting for a new
task value from the task t until the guard is satisfied.

(b) User step (t ▷ e): the workflow is similar to the step combi-
nator, but in order to send the task value to the expression, the
user needs to send a “continue” event.

2. Parallel combinators:

(a) Pair (t1 ▶◀ t2): and composition of two tasks that are worked
on in parallel. The task value of this combinator is a pair of both
task values.

(b) Choose (t1♦t2): or composition of two tasks that are worked
on in parallel. It picks the leftmost branch that has a value
of awaited type and yields it as the result, the other branch is
deleted.

Task evaluation is always driven by the input events in T̂OP . Tasks are
typed, hence accepted inputs should be of a certain type as well. When
the system receives an event, it passes this event to the running task, which
then is reduced to a new task. Evaluation of the tasks that happen between
interaction steps happens atomically with regard to inputs.

Tasks are modular: larger tasks can be composed of smaller ones; they
are first-class which means that tasks can be used in functions as arguments
and as a result. This way, custom collaboration patterns can be modelled.

11

Chapter 3

Semantics

Formal semantics specify the meaning or behaviour of software or hardware
programs. Semantics describe the process of program execution: starting
from the input state and ending in the output state, tracking the steps that
the computer takes while executing the program. Semantics are used to
reveal ambiguities or any possible complexities in defining documents and
to create the basis for implementation, analysis and verification [13].

3.1 Formal semantics

There are three major approaches in formal semantics: denotational seman-
tics, axiomatic semantics and operational semantics.

Denotational semantics describe what the effect of the program exe-
cution is. The effect of the program is the relationship between initial and
final states and it is achieved through the definition of a semantic function
for each syntactic category which maps them to mathematical objects.

Axiomatic semantics allows us to prove partial correctness properties
of the program using a logical system (assertions).

Operational semantics describe how a program is interpreted as a
sequence of computational steps. The main interest is how the effect of this
computational sequence is produced. This semantics gives an abstraction
of how the program is executed on the machine and does not provide any
further information about the use of registers, addresses and other memory
components for variables. It is independent from machine architecture and
the ways the program is actually implemented [13].

3.2 TopHat semantics

The sections below describe the syntax and operational semantics of TopHat
(T̂OP) language, which are used as the basis for the research. Soundness

12

and completeness of T̂OP are out of scope, so they are only briefly men-
tioned in the last section. The syntax and semantics of T̂OP are described
in the paper TopHat: A formal foundation for task-oriented programming
written by Tim Steenvoorden, Nico Naus and Marcus Klinik [4] is used in
this work. Tim Steenvoorden’s unpublished doctorate dissertation about
the development and formalization of T̂OP is a successor to this and other
papers published about T̂OP . Tim Steenvoorden’s thesis contains the most
recent T̂OP syntax and semantics, but due to the fact that it is still a work in
progress, the decision was made to use the most stable version of the T̂OP
semantics. And thus, the TopHat: A formal foundation for task-oriented
programming paper is used.

3.2.1 Syntax of TopHat

The host language is a simply typed λ-calculus that was extended with some
basic types (boolean, integer and string) and ML style references. Figure 3.1

shows the syntax of the host language and T̂OP .
Expressions and constants define the syntax of the host language. The

star symbol represents binary operators that are enumerated in a separate
syntactic category. Pairs are used for defining parallelized task results, con-
ditionals help with defining guards. The keyword ref yields a location l and
helps to implement shared editors. The variable x is a program variable, the
symbols ! and := represent dereferencing and assignment. A unit is used as
the result of an assignment.

Pretasks are tasks with unevaluated subexpressions from the host lan-
guage. There are open symbols (□,⊠,▷) that indicate tasks that require
user input and closed symbols (■,▶,♦,▶◀) used for the tasks that are eval-
uated without interaction with the user. The shared editor accepts the user
input in handling semantics, but its value changes at the specified location
l. Expression e in the shared editor pretask is evaluated to the location l in
the evaluation semantics described in Section 3.2.2.

The external choice combinator (♢) was left out of the description of the
syntax and semantics of the language, because it is not used in the latest
versions of the language due to its needlessness, and it was discovered that its
semantics contained errors. Moreover, mTask does not contain any similar
combinator, thus, omitting the external choice semantics will not influence
the semantics of mTask.

In addition, the filling of the combination combinator (▶◀) was changed
in this thesis, because it should be closed symbol as no user input is re-
quired. In the foundation paper for T̂OP [4] the symbol ▷◁ was used for
this combinator, but this appears to be a mistake. It was changed by Tim
Steenvorden in his doctorate dissertation [1] to the filled symbol, which is
used in this bachelor thesis.

13

e ::= Expressions

λx : τ.e | e1 e2 abstraction, application

| x | c | e1 ⋆ e1 variable, constant, operation

| if e1 then e2 else e3 | ⟨⟩ branch, unit

| ⟨e1, e2⟩ | fst e | snd e pair, projections

| ref e | !e | e1 := e2 | l references, location

| p pretask

c ::= B | I | S Constants: boolean, integer, string

⋆ ::= Binary operations

< | ≤ | ≡ | ̸≡ | ≥ | > equational

| + | − | × numerical

| ∧ | ∨ conjunction, disjunction

| ++ append

p ::= Pretasks

□ e | ⊠ τ | ■ e editors: valued, unvalued, shared

| e1 ▶ e2 | e1 ▷ e2 steps: internal, external

| | e1 ▶◀ e2 fail, combination

| e1♦e2 choice: internal

τ ::= Types

τ1 → τ2 | τ1 × τ2 | β function, product, basic

| Unit | Ref τ | Task τ unit, reference, task

β ::= Bool | Int | String Basic types: boolean, integer, string

Figure 3.1: Syntax of expressions, pretasks and types in TopHat.

Typing rules have the form Γ,Σ ⊢ e : τ and are read as in environment Γ
and store typing Σ the expression e has type τ. The typing rules in T̂OP are
shown in Figure 3.2. All the typing rules described in the formal foundation
paper [4] are present in the figure except for constants, binary operators and
units, which typing rules are trivial and thus were omitted in the paper and
in Figure 3.2, in consequence.

14

Γ,Σ ⊢ e : τ

Pretasks

T-Edit T-Enter T-Update

Γ,Σ ⊢ e : τ
Γ,Σ ⊢ □ e : Task τ Γ,Σ ⊢ ⊠τ : Task τ

Γ,Σ ⊢ e : Ref β

Γ,Σ ⊢ ■ e : Task β

T-Then T-Next T-Fail

Γ,Σ ⊢ e1 : Task τ1

Γ,Σ ⊢ e2 : τ1 → Task τ2

Γ,Σ ⊢ e1 ▶ e2 : Task τ2

Γ,Σ ⊢ e1 : Task τ1

Γ,Σ ⊢ e2 : τ1 → Task τ2

Γ,Σ ⊢ e1 ▷ e2 : Task τ2 Γ,Σ ⊢ : Task τ

T-Or T-And

Γ,Σ ⊢ e1 : Task τ

Γ,Σ ⊢ e2 : Task τ

Γ,Σ ⊢ e1♦e2 : Task τ

Γ,Σ ⊢ e1 : Task τ1 Γ,Σ ⊢ e2 : Task τ2

Γ,Σ ⊢ e1 ▶◀ e2 : Task (τ1 × τ2)

Expressions

T-Var T-Loc T-Ref T-Deref

x : τ ∈ Γ

Γ,Σ ⊢ x : τ

Σ(l) = β

Γ,Σ ⊢ l : Ref β

Γ,Σ ⊢ e : β
Γ,Σ ⊢ ref e : Ref β

Γ,Σ ⊢ e : Ref β

Γ,Σ ⊢!e : β

T-Assign T-Pair

Γ,Σ ⊢ e1 : Ref β Γ,Σ ⊢ e2 : β
Γ,Σ ⊢ e1 := e2 : Unit

Γ,Σ ⊢ e1 : τ1 Γ,Σ ⊢ e2 : τ2
Γ,Σ ⊢ ⟨e1, e2⟩ : τ1 × τ2

T-App T-Abs

Γ[x : τ1],Σ ⊢ e : τ2
Γ,Σ ⊢ λx : τ1.e : τ1 → τ2

Γ,Σ ⊢ e1 : τ1 → τ2 Γ,Σ ⊢ e2 : τ1
Γ,Σ ⊢ e1 e2 : τ2

T-If

Γ,Σ ⊢ e1 : Bool Γ,Σ ⊢ e2 : τ Γ,Σ ⊢ e3 : τ
Γ,Σ ⊢ if e1 then e2 else e3 : τ

Figure 3.2: Typing rules in TopHat.

15

3.2.2 Semantics of TopHat

Since the T̂OP ’s task language is embedded in a simply-typed λ-calculus, it
requires the specification of the terms evaluation in the host language and
the way it handles the task language. It can be done in two ways, inter-
nally by the system and externally by the user. As a result, two additional
semantics are used: normalisation (internal normalisation of the task) and
interaction (external interaction with the user).

The authors use rightward arrows to represent small-step semantics and
downward arrows for big-step semantics. The three resulting layers of se-
mantics are evaluation (↓), normalisation (⇓) and interaction (⇒). There
are two helper semantics: stride (⇝), used for normalisation, and handle
(→), used for interaction. Figure 3.3 shows how different semantics are
related.

Figure 3.3: Relations of semantics in TopHat. The image was copied from
the paper of T̂OP formal foundation [4].

Figure 3.4 provides an example of how different layers of semantics are
connected using simple program. The interaction semantics handles inputs
only for normalised tasks. Thus, the first semantics used in the program
is normalisation. The normalisation semantics is a big-step semantics that
consists of evaluation, the big-step reduction of expressions, and stride, the
internal reduction of tasks. Only when the task is normalised, the input
is handled by the handling semantics and the resulting task is normalised
again for the possible next input.

16

□(5 + 1) ▶ λx.if x = 42 then (□(7× 6) ♦ ⊠ Int) else
↓ □6 ▶ λx.if x = 42 then (□(7× 6) ♦ ⊠ Int) else

Normalisation I : evaluate

⇝ □6 ▶ λx.if x = 42 then (□(7× 6) ♦ ⊠ Int) else
Normalisation I : stride step

↓ if 6 = 42 then (□(7× 6) ♦ ⊠ Int) else
Stride step : evaluate I

↓ if False then (□(7× 6) ♦ ⊠ Int) else
Stride step : evaluate II

↓ Stride step : evaluate III

42−→ □42 ▶ λx.if x = 42 then (□(7× 6) ♦ ⊠ Int) else
Interaction : handle

↓ □42 ▶ λx.if x = 42 then (□(7× 6) ♦ ⊠ Int) else
Normalisation II : evaluate

⇝ □42 ▶ λx.if x = 42 then (□(7× 6) ♦ ⊠ Int) else
Normalisation II : stride step

↓ if 42 = 42 then (□(7× 6) ♦ ⊠ Int) else
Stride step : evaluate I

↓ if True then (□(7× 6) ♦ ⊠ Int) else
Stride step : evaluate II

↓ □(7× 6)♦ ⊠ Int Stride step : evaluate III

↓ □42♦ ⊠ Int Stride step : evaluate IV

↓ □42♦ ⊠ Int Normalisation III : evaluate

⇝ □42 Normalisation III : stride

Figure 3.4: Semantics example for TopHat.

17

Evaluation

Big-step semantics and a call-by-value strategy are used for evaluation. The
rule e, σ ↓ v, σ′ means that the expression e in state σ is evaluated to a value
v in state σ′. Figure 3.5 shows the value grammar in evaluation semantics
of T̂OP Tasks are values, and their constructors’ operands are evaluated
eagerly.

v ::= V alues

| λx : τ.e | ⟨v1, v2⟩ | ⟨ ⟩ abstraction, pair, unit

| c | l | t constant, location, task

t ::= Tasks

| □ v | ⊠ τ | ■ l editors

| t1 ▶ e2 | t1 ▷ e2 steps

| | t1 ▶◀ t2 | t1♦t2 fail, combination, choice

Figure 3.5: Evaluation value grammar in TopHat.

The evaluation rules for expressions e are standard, except for the task
constructs. Task evaluation rules can be deduced from the value grammar.
The steps’ right-hand sides stay unevaluated, because their evaluation re-
quires the task value of the left-hand side [4]. All the evaluation rules that
were provided in the formal foundation paper [4] are given in Figure 3.6.

18

e, σ ↓ v, σ′

E-App

e1, σ ↓ λx : τ.e′1, σ
′ e2, σ

′ ↓ v2, σ′′ e′1[x 7→ v2], σ
′′ ↓ v1, σ′′′

e1e2, σ ↓ v1, σ′′′

E-IfTrue E-IfFalse

e1, σ ↓ True, σ′ e2, σ
′ ↓ v, σ′′

if e1 then e2 else e3, σ ↓ v, σ′′
e1, σ ↓ False, σ′ e3, σ

′ ↓ v, σ′′

if e1 then e2 else e3, σ ↓ v, σ′′

E-Ref E-Deref E-Assign

e, σ ↓ v, σ′ l /∈ Dom(σ′)1

ref e, σ ↓ v, σ′[l 7→ v]

e, σ ↓ l, σ′

!e, σ ↓ σ′(l), σ′
e1, σ ↓ l, σ′ e2, σ

′ ↓ v2, σ′′

e1 := e2, σ ↓ ⟨⟩, σ′′[l 7→ v2]

E-Value E-Edit E-Enter E-Update

v, σ ↓ v, σ
e, σ ↓ v, σ′

□ e, σ ↓ □ v, σ′ ⊠ τ, σ ↓ ⊠ τ, σ

e, σ ↓ l, σ′

■ e, σ ↓ ■ l, σ′

E-Then E-Next E-Fail

e1, σ ↓ t1, σ′

e1 ▶ e2, σ ↓ t1 ▶ e2, σ′
e1, σ ↓ t1, σ′

e1 ▷ e2, σ ↓ t1 ▷ e2, σ′ , σ ↓ , σ

E-Pair E-Or

e1, σ ↓ v1, σ′ e2, σ
′ ↓ v2, σ′′

⟨e1, e2⟩, σ ↓ ⟨v1, v2⟩, σ′′
e1, σ ↓ t1, σ′ e2, σ

′ ↓ t2, σ′′

e1♦e2, σ ↓ t1♦t2, σ′′

E-And

e1, σ ↓ t1, σ′ e2, σ
′ ↓ t2, σ′′

e1 ▶◀ e2, σ ↓ t1 ▶◀ t2, σ′′

Figure 3.6: Evaluation rules in TopHat.

1Location l is not in the domain of σ′

19

Task observations

Observations on tasks are used in both normalisation and interaction seman-
tics. Observations are functions on the syntax tree of the task. The partial
function observable value V associates a value v to tasks t where possible.
The function failing F determines whether task t is failing: if the function
with task t in state σ returns True, then the task is failing. The definitions
of these functions are given in Figure 3.7.

In the observable value function, ⊥ represents no value and σ(l) is a
value of a shared editor at location l in state σ. Both functions use evaluated
expressions as their arguments.

Striding semantics

The striding semantics is mainly used to rewrite the combinators into their
new reduced form. It is used in normalisation semantics described in Sec-
tion 3.2.2. In striding semantics, the rule t, σ ⇝ t′, σ′ means that task t in
state σ reduces to task t′ in state σ′. Tasks like editors and fail are reduced
to themselves. The striding rules are shown in Figure 3.8.

20

V : Tasks× States ⇀ V alues

V(□ v, σ) = v

V(⊠ τ, σ) = ⊥
V(■ l, σ) = σ(l)

V(, σ) = ⊥
V(t1 ▶ e2, σ) = ⊥
V(t1 ▷ e2, σ) = ⊥

V(t1 ▶◀ t2, σ) =

⟨v1, v2⟩ when V(t1, σ) = v1 ∧ V(t2, σ) = v2

⊥ otherwise

V(t1♦t2, σ) =

v1 when V(t1, σ) = v1

v2 when V(t1, σ) = ⊥ ∧ V(t2, σ) = v2

⊥ otherwise

F : Tasks× States→ Booleans

F(□ v, σ) = False

F(⊠ τ, σ) = False

F(■ l, σ) = False

F(, σ) = True

F(t1 ▶ e2, σ) = F(t1, σ)

F(t1 ▷ e2, σ) = F(t1, σ)

F(t1 ▶◀ t2, σ) = F(t1, σ) ∧ F(t2, σ)

F(t1♦t2, σ) = F(t1, σ) ∧ F(t2, σ)

Figure 3.7: Observable values and failing in T̂OP .

21

t, σ ⇝ t′, σ′

Step

S-ThenStay

t1, σ ⇝ t′1, σ
′

t1 ▶ e2, σ ⇝ t′1 ▶ e2, σ
′ V(t′1, σ′) = ⊥

S-ThenFail

t1, σ ⇝ t′1, σ
′ e2 v1, σ

′ ↓ t2, σ′′

t1 ▶ e2, σ ⇝ t′1 ▶ e2, σ
′ V(t′1, σ′) = v1 ∧ F(t2, σ

′′)

S-ThenCont

t1, σ ⇝ t′1, σ
′ e2 v1, σ

′ ↓ t2, σ′′

t1 ▶ e2, σ ⇝ t2, σ′′
V(t′1, σ′) = v1 ∧ ¬F(t2, σ

′′)

Choose

S-OrLeft

t1, σ ⇝ t′1, σ
′

t1♦t2, σ ⇝ t′1, σ
′ V(t′1, σ′) = v1

S-OrRight

t1, σ ⇝ t′1, σ
′ t2, σ

′ ⇝ t′2, σ
′′

t1♦t2, σ ⇝ t′2, σ
′′ V(t′1, σ′) = ⊥ ∧ V(t′2, σ′′) = v2

S-OrNone

t1, σ ⇝ t′1, σ
′ t2, σ

′ ⇝ t′2, σ
′′

t1♦t2, σ ⇝ t′1♦t
′
2, σ

′′ V(t′1, σ′) = ⊥ ∧ V(t′2, σ′′) = ⊥

Ready

S-Edit S-Fill S-Update S-Fail

□ v, σ ⇝ □ v, σ ⊠τ, σ ⇝ ⊠τ, σ ■ l, σ ⇝ ■ l, σ , σ ⇝ , σ

Congruence

S-Next S-And

t1, σ ⇝ t′1, σ
′

t1 ▷ e2, σ ⇝ t′1 ▷ e2, σ
t1, σ ⇝ t′1, σ

′ t2, σ
′ ⇝ t′2, σ

′′

t1 ▶◀ t2, σ ⇝ t′1 ▶◀ t
′
2, σ

Figure 3.8: Striding semantics in T̂OP .

22

Normalising tasks

The normalisation semantics reduce expressions of the type Task until they
can handle an input. It is a big-step semantics and it makes use of the
host language. The rule e, σ ⇓ t, σ′ means that the expression e in state σ
normalises to task t in state σ′.

The normalisation rules are shown in Figure 3.9. All rules ensure that
expressions are first evaluated by the host language ↓ and then reduced by
the stride semantics ⇝. These actions are repeated in the rule N-Repeat to
ensure that the final state and the task stabilise.

e, σ ⇓ t, σ′

N-Done

e, σ ↓ t, σ′ t, σ′ ⇝ t′, σ′′

e, σ ⇓ t, σ′
σ′ = σ′′ ∧ t = t′

N-Repeat

e, σ ↓ t, σ′ t, σ′ ⇝ t′, σ′′ t′, σ′′ ⇓ t′′, σ′′′

e, σ ⇓ t′′, σ′′′
σ′ ̸= σ′′ ∧ t ̸= t′

Figure 3.9: Normalisation semantics in T̂OP .

23

Handling and interaction semantics

The handling semantics is the outermost layer of the semantics’ stack. It is
responsible for external steps and for changing editors’ values. Interaction
semantics is defined by the use of handling semantics. Only normalised
task t are used in interaction semantics. When the input event i occurs, it
is handled for the task t, resulting in a new task t′ that is then prepared
(using normalising semantics) for the next input as shown in Figure 3.10.

t, σ
i
=⇒ t′, σ′

I-Handle

t, σ
i−→ t′, σ′ t′, σ′ ⇓ t′′, σ′′

t, σ
i
=⇒ t′′, σ′′

Figure 3.10: Interaction semantics in T̂OP .

The input grammar is described in Figure 3.11. F (first) and S (second)
encode the paths to the task to which input should be passed. Actions can
be either a value or a “continue” action.

i ::= a | F i | S i Input : action, pass to first, pass to second

a ::= v | C Action : change, continue

Figure 3.11: Input grammar in T̂OP .

The function I takes a normalised task and a state as an input and based
on them calculates a set of input events that the given task expects. The
function is used in the proofs of soundness of T̂OP , which are not covered
in this thesis. Thus, the function I was added to Appendix A.1.

Input handling is done using the handling semantics that is described in
Figure 3.12. It is a small-step semantics where transitions are labelled. A
task t in a state σ and an input i are taken to yield a new task t′ in a new
state σ′.

24

t, σ
i−→ t′, σ′

Editing

H-Change H-Fill

□ v, σ
v′−→ □ v′, σ

v, v′ : τ
⊠ τ, σ

v′−→ □ v′, σ
v′ : τ

H-Update

■ l, σ
v′−→ ■ l, σ[l 7→ v′]

σ(l), v′ : τ

Continuing

H-Next

e2 v1, σ ⇓ t2, σ′

t1 ▷ e2, σ
C−→ t2, σ

V(t1, σ) = v1 ∧ ¬F(t2, σ
′)

Passing

H-PassThen H-FirstAnd H-FirstOr

t1, σ
i−→ t′1, σ

′

t1 ▶ e2, σ
i−→ t′1 ▶ e2, σ

′

t1, σ
i−→ t′1, σ

′

t1 ▶◀ t2, σ
F i−−→ t′1 ▶◀ t2, σ

′

t1, σ
i−→ t′1, σ

′

t1♦t2, σ
F i−−→ t′1♦t2, σ

′

H-PassNext H-SecondAnd H-SecondOr

t1, σ
i−→ t′1, σ

′

t1 ▷ e2, σ
i ̸=C−−→ t′1 ▷ e2, σ

′

t2, σ
i−→ t′2, σ

′

t1 ▶◀ t2, σ
S i−−→ t1 ▶◀ t′2, σ

′

t2, σ
i−→ t′2, σ

′

t1♦t2, σ
S i−−→ t1♦t′2, σ

′

Figure 3.12: Handling semantics in T̂OP .

25

3.2.3 Reference to Soundness and completeness of inputs

To prove that the semantics of T̂OP is sound, the authors showed that eval-
uation, normalisation and handling are type preserving. They showed that
the failing function F indicated steps that cannot be normalised correctly
and proved that the function computing all possible inputs is sound and
complete.

These proofs do not influence the creation of the mTask semantics and
prove only how well the semantics of T̂OP is defined. These proofs can
later be repeated for the mTask semantics, but soundness and completeness
is outside of the scope of this thesis. Therefore, proofs are left out of this
description of T̂OP semantics. All the theorems and proofs are accessible
in the paper of TopHat’s formal foundation [4].

26

Chapter 4

mTask semantics

This chapter focuses on the mTask language’s syntax and semantics. The
mTask language is a TOP language that has an implementation in Clean
and is designed for programming IoT devices. The syntax, types and typing
rules are described in Section 4.1. The section focuses on the functions and
expressions in the host language—an enriched λ-calculus—and pretasks in
mTask. Section 4.2 describes the task language constructs in more detail.
Section 4.3 covers evaluation, normalisation, striding, interaction and han-
dling semantics in the form of operational semantics of mTask and provides
the rules for all the language constructs.

4.1 Syntax

In this section, the mTask constructs are described. For formalisation,
mTask is embedded in the λ-calculus, which is extended with some con-
structs. Before defining the semantics, it is important to show the syntax
of both the host and mTask language. In addition, the types used in the
language and typing rules for all constructs are provided at the end of this
section.

4.1.1 Constants and binary operators

Expressions contain constants and binary operators, the syntax for which is
defined in Figure 4.1. Constants are members of one of the following sets:
booleans, integers, real numbers. Binary operators are operators used in
expressions and they describe operations on two values, such as comparison,
numerical or logic operators.

27

c ::= B | I | R Constant

boolean, integer, real number

⋆ ::= Binary operator

< | <= | == less, less or equal, equal

| ! = | >= | > not equal, more or equal, more

| + | − | ∗ | / numerical

| ∧ | ∨ conjunction, disjunction

Figure 4.1: Syntax of constants and binary operators in mTask.

4.1.2 Expressions

The task language is embedded in a simply-typed λ-calculus, which is ex-
tended with some constructs that are described below.

One such construct is Λ, which defines the body of the function, or sets
the initial value of SDS, or sets the physical location to the sensor task. SDSs
and sensors are described in Section 4.2.2 and Section 4.2.1 respectively.
Compared to T̂OP , mTask makes sure that functions, locations and sensors
are only defined at the top level and are always fully applied. Thus, they are
separated into their own category—Main. In the definition of the function,
xf is the function itself and xn are arguments, where n is a natural positive
number indicating the number of the arguments. Sensors are assigned some
abstract location µ. It is an abstract description of the physical location
of the sensor (for example, a pin on the micro controller). Locations are
assigned with some expression e that holds the initial value of the location.

Moreover, the host language consists of variables, constants, applica-
tions, unary and binary operators, conditionals, pretasks, locations (used in
SDS) and sensors. Tuple and their projections are used as results of obser-
vations on tasks. An application is used to apply x on the parameters en,
where n is a positive natural number representing the number of arguments.

28

Λ ::= let xf xn = e in Λ Main : function

| sds l = e in Λ SDS

| sns s = µ in Λ sensor

| e

e ::= Expression

| x | c | xf en variable, constant, application

| ¬ e | e1 ⋆ e1 | ⟨ ⟩ negation, binary operation, unit

| if e1 then e2 else e3 condition

| ⟨e1, e2⟩ | fst e | snd e 2-tuple, projections

| p | l | s pretask, location, sensor

Figure 4.2: Syntax of function, SDS and sensor definitions and expressions
in mTask.

4.1.3 Pretasks

Pretasks are constructs of the language that describe tasks with unevaluated
subexpressions with respect to the host language. When a pretask and all
its subexpressions are evaluated, it is called a task. Evaluation is a part of
the evaluation semantics and is discussed in Section 4.3.1.

The task language includes sensors, which are discussed in detail in Sec-
tion 4.2.1. The language also includes a fail pretask, which indicates a task
that never has a value and never accepts input. An important aspect of the
fail pretask is that the implementation of mTask does not have such a con-
struct and tasks cannot be programmed to end in a fail state. However, fail
is important in the semantics and is used to indicate states of the program
that should never be reached. Thus, fail is added to the pretask category.

Three pretasks—getSds, setSds and updSds—are used to read the
value, set a new value or change the value of a specified SDS. In T̂OP ,
referencing, value assignment and dereferencing of SDS are part of the host
language syntax. In contrast, mTask has getSds, setSds and updSds in
its task language.

For describing the formal foundation of T̂OP , the paper TopHat: A
formal foundation for task-oriented programming was taken [4]. It did not

contain changes that were made later to the T̂OP syntax and semantics.
The newest version of T̂OP formal foundation is described in Tim Steen-
voorden’s unpublished doctorate dissertation [1], and it contains some in-
teresting editors and combinators that are worth mentioning. For example,
Tim Steenvoorden introduced the valued read-only editor (□◦ e), which has
an analogue in mTask in the form of rtrn and unstable pretasks. How-

29

ever, in mTask rtrn and unstable can have tasks as their values, while the
read-only editor can only have values. Both rtrn and unstable emit the
resulting value of the expression, which is stable or unstable respectively.
T̂OP does not have a notion of stability.

Moreover, Tim Steenvoorden introduced the repeat combinator (↶ t)
that constantly repeats the given evaluated task t. The mTask language has
a similar rpeat e pretask. When expression e is evaluated into task t, we
get the task rpeat t. Defining semantics for this task turned out to be a
complicated task.

The mTask language also contains a delay e pretask, that makes the
system wait for a time specified by the expression e. This task uses the
notion of changing time, modelling of which makes creation of language
semantics way harder. It was decided to leave this task out of scope due to
time constraints.

The pretask language also includes combinators; it has two parallel and
one sequential combinator. When a task value is observed, the parallel com-
binator && returns both task results combined into a 2-tuple (pair), while
|| yields only one of the task results. The parallel || combinator is similar

to the choice (♦) combinator from T̂OP . The sequential step combinator is
the only sequential combinator in mTask. It is similar to the internal step
(▶) combinator from T̂OP , but there are major differences in the evalua-
tion semantics, described in Section 4.3.1. The mTask step combinator uses
continuations that calculate the right-hand side of the step combinator de-
pending on the task value of the left-hand side. All mentioned combinators
are described in more detail in Section 4.2.4.

p ::= Pretask

⊛ s | sensor, fail

| getSds l | setSds l e | updSds l (λx.e) get, set, update SDS

| rtrn e | unstable e return stable, unstable

| e1 && e2 | e1 || e2 parallel: and, or

| e1 >>∗ [cl,] sequential step

cl ::= OnValue (λx.e1) (λx.e2) Continuation : valued

| OnStable (λx.e1) (λx.e2) stable

| OnUnstable (λx.e1) (λx.e2) unstable

Figure 4.3: Syntax of pretasks and continuations in mTask.

4.1.4 Types and typing rules

Figure 4.4 shows the grammar of types used in mTask. The type β contains
basic types: boolean, integer, real. The type τ describes types of pair, unit

30

and basic type β. The type ρ describes the function result, which can be
either V alue or Task. The type f is used to describe a function that takes
n number of arguments (τn) of the same type τ and returns the type ρ. The
type sds is used to indicate SDS and the type sens is used for sensors.

β ::= Bool | Int | Real Basic type : boolean, integer, Real

τ ::= τ1 × τ2 | ⟨⟩ | β V alue : pair, unit, basic type

ψ ::= MTask τ Task

ρ ::= τ | ψ Function result: value, task

f ::= τn → ρ Function

sds ::= SDS τ Shared Data Source

sens ::= Sensor τ Sensor

Figure 4.4: Types in mTask.

All typing rules are of the form Γ,Σ ⊢ e : τ and, as in T̂OP , are read as in
the environment Γ and store typing Σ, expression e has type τ. Environment
Γ is used to store types of variables and functions, and store typing Σ is used
to store the types of locations and sensors.

Figure 4.5 contains typing rules for all main constructs and expressions.
Environment Γ and store location Σ are actively used for storing types of
variables, functions and values that are used in both typing categories. The
notion Σ[l : SDS τ] means that the location l of the type SDS τ is stored in
the store location Σ. Similar notions are used for sensors in Σ and variables
and functions in Γ. The stored types are used in expressions to check that
the type is known for the environment Γ or store location Σ. The notion
µ : τ is a guard that checks that the abstract sensor location is of the type τ.
Moreover, ⋆ : τ1 τ1 → τ2 is also a guard that checks that the star-function
takes two arguments of the type τ1 and returns a result of the type τ2.

The bar above the arguments in the rule T-App means that there are n
arguments of the types τ1...τn.

31

Function, location and sensor definition

T-LetFunc

Γ[xn : τn, xf : τn → ρ1],Σ ⊢ e : ρ1 Γ[xf : τn → ρ1],Σ ⊢ Λ : ρ2
Γ,Σ ⊢ let xf xn = e in Λ : ρ2

T-LetLoc

Γ,Σ ⊢ e : τ Γ,Σ ⊢ l : SDS τ Γ,Σ[l : SDS τ] ⊢ Λ : ρ

Γ,Σ ⊢ sds l = e in Λ : ρ

T-LetSensor

µ : τ Γ,Σ ⊢ s : Sensor τ Γ,Σ[s : Sensor τ] ⊢ Λ : ρ

Γ,Σ ⊢ sns s = µ in Λ : ρ

Expressions

T-Var T-Const T-Unit

x : τ ∈ Γ

Γ,Σ ⊢ x : τ

c ∈ β

Γ,Σ ⊢ c : β Γ,Σ ⊢ ⟨ ⟩ : Unit

T-Pair T-Loc T-Sensor

Γ,Σ ⊢ e1 : τ1 Γ,Σ ⊢ e2 : τ2
Γ,Σ ⊢ ⟨e1, e2⟩ : τ1 × τ2

l : SDS τ ∈ Σ

Γ,Σ ⊢ l : SDS τ

s : Sensor τ ∈ Σ

Γ,Σ ⊢ s : Sensor τ

T-Neg T-If

Γ,Σ ⊢ e : Bool
Γ,Σ ⊢ ¬e : Bool

Γ,Σ ⊢ e1 : Bool Γ,Σ ⊢ e2 : ρ Γ,Σ ⊢ e3 : ρ
Γ,Σ ⊢ if e1 then e2 else e3 : ρ

T-App T-Binary

Γ,Σ ⊢ en : τn xf : τn → ρ ∈ Γ

Γ,Σ ⊢ xf en : ρ

Γ,Σ ⊢ e1 : τ1 Γ,Σ ⊢ e2 : τ1 ⋆ : τ1 τ1 → τ2

Γ,Σ ⊢ e1 ⋆ e2 : τ2

Figure 4.5: Definitions and expressions typing rules in mTask.

32

Figure 4.6 describes the typing rules for continuations. All continuations
have the same typing rules, thus, symbol≫ indicates all of them: OnVa-
lue, OnStable or OnUnstable. Continuations receive an argument of the
type τ1 and they contain two functions: the first calculates if the continu-
ation is matched and returns the Bool value and the second one calculates
the new task of type MTask τ2 from the argument it received.

T-Continuation

Γ[x : τ1],Σ ⊢ e1 : Bool Γ[x : τ1],Σ ⊢ e2 : MTask τ2

Γ,Σ ⊢≫ (λx.e1) (λx.e2) : τ1 → MTask τ2

Figure 4.6: Continuations typing rules in mTask.

Figure 4.7 shows the typing rules of pretasks. Most of the pretasks are
of the type MTask τ, except for the parallel combinator of the type MTask

(τ1 × τ2). The figure includes typing rules for sensors, fail tasks, all SDS
constructs, return, unstable return and combinators.

Step combinator uses list notation for continuations and [cl,] represents
the list of such continuations. The rule T-Step shows that all of these
continuations have the type τ1 → MTask τ2, which corresponds to the
T-Continuation rule.

33

Γ,Σ ⊢ e : τ

Sensor, fail, SDS

T-Sensor T-Fail T-Get

Γ,Σ ⊢ s : Sensor τ

Γ,Σ ⊢ ⊛ s : MTask τ Γ,Σ ⊢ : MTask τ

Γ,Σ ⊢ l : SDS τ

Γ,Σ ⊢ getSds l : MTask τ

T-Set T-Update

Γ,Σ ⊢ l : SDS τ Γ,Σ ⊢ e : τ
Γ,Σ ⊢ setSds l e : MTask τ

Γ,Σ ⊢ l : SDS τ Γ[x : τ],Σ ⊢ e : τ
Γ,Σ ⊢ updSds l (λx.e) : MTask τ

Return, unstable

T-Return T-Unstable

Γ,Σ ⊢ e : τ
Γ,Σ ⊢ rtrn e : MTask τ

Γ,Σ ⊢ e : τ
Γ,Σ ⊢ unstable e : MTask τ

Parallel and step combinator

T-And

Γ,Σ ⊢ e1 : MTask τ1 Γ,Σ ⊢ e2 : MTask τ2

Γ,Σ ⊢ e1 && e2 : MTask (τ1 × τ2)

T-Or

Γ,Σ ⊢ e1 : MTask τ Γ,Σ ⊢ e2 : MTask τ

Γ,Σ ⊢ e1 || e2 : MTask τ

T-Step

Γ,Σ ⊢ e1 : MTask τ1 Γ,Σ ⊢ cl : τ1 → MTask τ2

Γ,Σ ⊢ e1 >>∗ [cl,] : MTask τ2

Figure 4.7: Pretasks typing rules in mTask.

34

4.2 Task language

This section provides a more detailed overview of the pretasks that the task
language consists of.

4.2.1 Sensors

The domain of mTask lies in programming IoT systems. The IoT system in-
puts are different sensors. Sensors are, for example, temperature, humidity,
IR distance, etc. sensors connected to the micro processor. Their outputs
are processed in the system, which changes according to the value read from
the sensor.

Sensors (⊛s) as language constructs are needed for semantics of the
language, but they do not exist as a single sensor task in the mTask imple-
mentation in Clean. A sensor task includes the location, where the sensor’s
value can be read from. Every sensor is of the type Sensor τ, where τ is the
type of the values that are stored at the location it is pointing to.

The values at the sensor’s location cannot be changed by any of the
tasks, only observed. It comes from the nature of the sensor; its values are
changed due to the change in the environment it is located in, and they can
only be read. Thus, in the semantics, the values at the referenced location
can only be changed by the system: whenever a new value is received, it is
updated at the location by the system. The processing of a sensor’s input
is done by the handling semantics described in Section 4.3.6.

4.2.2 Shared Data Source

In mTask there are tasks that read, set or update the value of SDS. All of
these tasks are of the type MTask τ, but their arguments differ.

The task getSds reads the value of SDS at the location l and, when
observed, returns the read value. It is similar to T̂OP shared editor with
the only difference that it does not show any UI and, thus, the value cannot
be updated by a user.

The task setSds takes two arguments and sets a value of SDS. Its first
argument should be the location of the SDS and the second argument is the
value that the location should be set to.

The task updSds updates the value of the specified SDS. It takes two
arguments: the first is the location of the SDS, and the second is a function
that changes the SDS’s current value to the new one. The task updSds can
be replaced by a sequence of reading SDS’s value, a function that changes the
read value and writing a new SDS’s value to the location in T̂OP . However,
it is not possible in mTask, because normalisation does not reduce the task to
its final form, but strides it once. Thus, tasks that write the value to SDS can
interrupt the process of updating the value using the three aforementioned

35

tasks and make the updated value invalid. Execution of updSds is atomic
and ensures that the SDS value is not changed by another task between
reading and writing.

4.2.3 Return, unstable

The tasks rtrn and unstable are described in Tim Steenvoorden’s thesis [1]

with read-only editor (□◦ e), but they are not mentioned in the T̂OP foun-
dation paper [4] used for this thesis. Moreover, both mTask returns use the
notion of stability that is specific to the language.

The task rtrn e returns the stable value of expression e. It takes an
expression e of type τ and yields a value of the MTask τ type. The task
unstable does the same as rtrn with the difference that the yielded value
is unstable.

4.2.4 Combinators and continuations

There are two types of combinators used in mTask: sequential (>>∗) and
parallel (&& and ||).

Even though there is only one type of sequential combinator—step (>>
∗), it is possible to derive different types of workflow from it with the use
of continuations:

• OnValue continuation: when the left-hand side of the step combinator
yields a value and the predicate function evaluates to True, then the
combinator proceeds to the right-hand side. If the left-hand side emits
no value, the combinator continues waiting for it.

• OnStable continuation: is similar to the first combinator, but the
value has to be stable.

• OnUnstable continuation: is similar to the first combinator, but the
value has to be unstable.

There are two parallel combinators: conjunction (&&) and disjunction
(||). The combinators are named after and and or logic functions. The
conjunction combinator waits until both tasks have task values and, when
observed, yields both task values as a pair. The disjunction combinator
selects the left-most value: if the left-hand side does not have a stable value,
the combinator, when observed, yields the right-hand side’s stable value,
and in any other case, the left-hand side value is selected. The observation
function V, defined in Section 4.3.2, describes how the task value is selected
when the task is observed.

36

4.3 Semantics

All language constructs defined in Section 4.1 are used in this section to
formalise the semantics of the mTask language.

The semantics are divided into two big-step semantics, which are evalua-
tion (↓) and normalisation (⇓), and three small-step semantics being striding

(⇝), handling (→) and interaction (⇒). Similarly to the T̂OP semantics
described in Section 3.2.2 and Figure 3.3, normalisation semantics uses eval-
uation semantics, which evaluates tasks and expressions, and stride to nor-
malise the evaluated constructs. Moreover, interaction semantics uses nor-
malised expressions and tasks to handle user input on the layer of handling
semantics or continue task normalisation.

Figure 4.8 provides an example of how different layers of semantics are
connected using simple program. Tasks t1 and t2 in the parallel or combina-
tor are considered to be some abstract tasks that do not have any observable
values. Thus, the last stride rewrites the combinator into itself.

The following sections describe all layers of the semantics mentioned
above and provide the semantic rules for language constructs.

37

sns s = 4 in

(⊛ s >>∗ [OnValue (λx.x = 42) (λx.t1 || t2)])
↓ ⊛ 4 >>∗ [OnValue (λx.x = 42) (λx.t1 || t2)]

Normalisation I : evaluation I

↓ ⊛ 4 >>∗ λs v.if v = 42 then (t1 || t2) else
Normalisation I : evaluation II

⇝ ⊛ 4 >>∗ λs v.if v = 42 then (t1 || t2) else
Normalisation I : stride step with no task value

4 35−−→ ⊛ 4 >>∗ λs v.if v = 42 then (t1 || t2) else
Interaction I : handle

↓ ⊛ 4 >>∗ λs v.if v = 42 then (t1 || t2) else
Normalisation II : evaluate

⇝ ⊛ 4 >>∗ λs v.if v = 42 then (t1 || t2) else
Normalisation II : stride step

↓ if 35 = 42 then (t1 || t2) else
Stride step : evaluate I

↓ if False then (t1 || t2) else
Stride step : evaluate II

↓ Stride step : evaluate III

4 42−−→ ⊛ 4 >>∗ λs v.if v = 42 then (t1 || t2) else
Interaction II : handle

↓ ⊛ 4 >>∗ λs v.if v = 42 then (t1 || t2) else
Normalisation III : evaluate

⇝ ⊛ 4 >>∗ λs v.if v = 42 then (t1 || t2) else
Normalisation III : stride step

↓ if 42 = 42 then (t1 || t2) else
Stride step : evaluate I

↓ if True then (t1 || t2) else
Stride step : evaluate II

↓ t1 || t2 Stride step : evaluate III

↓ t1 || t2 Normalisation IV : evaluate

⇝ t1 || t2 Normalisation IV : stride (no task values)

Figure 4.8: Semantics example for mTask.

38

4.3.1 Evaluation

Evaluation is a big-step semantics, which is used for pretask and expression
evaluation. The rule structure in this semantics is the same as in T̂OP :
e, σ ↓ v, σ′; and it means the expression e in state σ is evaluated to a value
v in state σ′. Values can be abstractions, pairs, units, constants, locations
or tasks. Pretasks always evaluate to tasks, while expressions evaluate to
values described in the value grammar. The grammar of evaluation values
is shown in Figure 4.9.

v ::= V alues

λxn : τn.e | ⟨e1, e2⟩ | ⟨ ⟩ abstraction, pair, unit

| c | l | t | µ constant, location, task, sensor

t ::= ⊛ µ | Tasks: sensor, fail

| getSds l | setSds l v get, set SDS

| updSds l (λx.e) update SDS

| rtrn v | unstable v return stable, unstable

| t1 && t2 | t1 || t2 parallel: and, or

| t1 >>∗ (λx y.e) sequential step

Figure 4.9: Value grammar in mTask.

Figure 4.10 shows the evaluation of function, location and sensor defini-
tions and host language expressions. The bar above the variables and values
indicates that expressions have several elements of the same syntactic cat-
egory, and n is a natural positive number indicating the number of such
elements.

The notion σ[l 7→ v1] means that the value of SDS at the location l is
set to the value v1 in state σ. The substitution method is used for sensors
or functions when they are replaced with their definitions. For example,
Λ[µ / s] means that all the occurrences of s in Λ are replaced with the sen-
sor’s physical location µ [14]. The substitution method is used in E-LetFunc,
E-LetSensor and E-App.

E-LetFunc sets the definition of the function xf, where xf is the name of
the function and xn are the arguments. Since the expression e can have a
recursive call of the function xf, an additional substitution was introduced
above the line. In case e contains a recursive call of the function, it replaces
all mentions of xf with the new let-expression which sets the body of the
function to be e again [14, Sec. 2.3.3]. When the let-expression is evaluated

39

within the expression e, then the rule E-LetFunc is used again on this let-
expression.

E-App evaluation happens when the function x described in syntax of
the host language in Section 4.1.2 is replaced with the lambda-expression
by an E-LetFunc rule application. Thus, its form is different compared to
the one described in language syntax.

E-LetFunc

Λ[λxn.e[let xf xn = e in xf xn / xf] / xf], σ ↓ v, σ′

let xf xn = e in Λ, σ ↓ v, σ′

E-LetLoc

e, σ ↓ v1, σ′ Λ, σ′[l 7→ v1] ↓ v2, σ′′

sds l = e in Λ, σ ↓ v2, σ′′

E-LetSensor E-App

Λ[µ / s], σ ↓ v, σ′

sns s = µ in Λ, σ ↓ v, σ′
en, σ ↓ vn, σ′ e[vn / xn], σ

′ ↓ v, σ′′

(λxn.e) en, σ ↓ v, σ′′

E-Binary E-Pair

e1, σ ↓ v1, σ′ e2, σ
′ ↓ v2, σ′′ v3 = v1 ⋆ v2

e1 ⋆ e2, σ ↓ v3, σ′′
e1, σ ↓ v1, σ′ e2, σ

′ ↓ v2, σ′′

⟨e1, e2⟩, σ ↓ ⟨v1, v2⟩, σ′′

E-Neg E-Const E-Unit

e, σ ↓ v1, σ′ v2 = ¬v1
¬e, σ ↓ v2, σ′ c, σ ↓ v, σ′ ⟨ ⟩, σ ↓ ⟨ ⟩, σ

E-Value E-Loc E-Sensor

v, σ ↓ v, σ l, σ ↓ l, σ µ, σ ↓ µ, σ

E-IfTrue E-IfFalse

e1, σ ↓ True, σ′ e2, σ
′ ↓ v, σ′′

if e1 then e2 else e3, σ ↓ v, σ′′
e1, σ ↓ False, σ′ e3, σ

′ ↓ v, σ′′

if e1 then e2 else e3, σ ↓ v, σ′′

Figure 4.10: Evaluation semantics of expressions in mTask.

40

The step combinator (>>∗) uses a continuation function for evaluation
of the right-hand side of the combinator. The function is provided in Fig-
ure 4.11. It takes the list of continuations and the two abstract names of the
variables that is not yet in the domain of σ. The second Name argument v
is the task value and the first Name argument s is the value’s stability. The
substitution method is used in the function and the argument x in functions
e1 and e2 is replaced with an actual value.

C : [Continuation]×Name×Name→ Expression

C([], s, v) =
C(OnValue (λx.e1) (λx.e2) : cr, s, v) = if e1[v/x]

then e2[v/x]

else C(cr, s, v)

C(OnStable (λx.e1) (λx.e2) : cr, s, v) = if s ∧ e1[v/x]
then e2[v/x]

else C(cr, s, v)

C(OnUnstable (λx.e1) (λx.e2) : cr, s, v) = if ¬s ∧ e1[v/x]
then e2[v/x]

else C(cr, s, v)

Figure 4.11: Continuation function in mTask.

Tasks are evaluated pretasks. The expressions that these pretasks con-
tain are evaluated, which allows to normalise them in the corresponding
semantics described in Section 4.3.3. For example, the second argument
of setSds pretask is an expression, but as soon as evaluation happens, its
argument becomes an actual value v. Later, it is used in striding semantics,
shown in Section 4.3.4, to update the SDS’s value at location l.

Figure 4.12 provides the rules for evaluation of pretasks into tasks. All
sensors, SDS locations and functions are always defined at the top level,
which means that their definition evaluation happens first. All sensors have
their actual location value µ by the time of their evaluation. SDS’s default
value is set by E-LetLoc, so whenever the value is read by the task, it is
always there. Thus, location l will have its default value by the time SDS
related functions are evaluated and normalised.

E-Step evaluates its left-hand side into the task, whilst the continuation
list is transformed into the expression e2 using the continuation function
shown in Figure 4.11.

41

e, σ ↓ v, σ′

E-Sensor E-Fail E-Get

⊛ µ, σ ↓ ⊛ µ, σ , σ ↓ , σ getSds l, σ ↓ getSds l, σ

E-Set E-Update

e, σ ↓ v, σ′

setSds l e, σ ↓ setSds l v, σ′ updSds l (λx.e), σ ↓ updSds l (λx.e), σ

E-Return E-Unstable

e, σ ↓ v, σ′

rtrn e, σ ↓ rtrn v, σ′
e, σ ↓ v, σ′

unstable e, σ ↓ unstable v, σ

E-ParallelOr E-ParallelAnd

e1, σ ↓ t1, σ′ e2, σ
′ ↓ t2, σ′′

e1 || e2, σ ↓ t1 || t2, σ′′
e1, σ ↓ t1, σ′ e2, σ

′ ↓ t2, σ′′

e1 && e2, σ ↓ t1 && t2, σ′′

E-Step

e1, σ ↓ t1, σ′

e1 >>∗ [cl,], σ ↓ t1 >>∗ (λx y.e2), σ′
e2 = C([cl,], x, y);x, y /∈ Dom(σ)

Figure 4.12: Evaluation semantics of pretasks in mTask.

42

4.3.2 Task fail and observation

The striding semantics, described in Section 4.3.4, makes use of functions
that observe a task. These functions are semantic functions on the syntax
tree of tasks.

The fail function F is the total function that determines if the task is
failing. It takes a task as its argument and returns a boolean value as the
result. It returns True whenever a task contains a fail and False in any
other case. Compared to the T̂OP , the mTask fail function does not use the
state as an argument, because the result is solely calculated based on the
given task’s current form. When a task that includes sub tasks is checked,
the sub tasks are checked and their values are used to calculate the failing
of the initial task. The fail function is shown in Figure 4.13.

F : Task → Bool

F(⊛ µ) = False

F() = True

F(getSds l) = False

F(setSds l v) = False

F(updSds l (λx.e)) = False

F(rtrn v) = False

F(unstable v) = False

F(t1 && t2) = F(t1) ∨ F(t2)

F(t1 || t2) = F(t1) ∧ F(t2)

F(t1 >>∗ (λx y.e2)) = F(t1)

Figure 4.13: Fail function in mTask.

The observable value function V is a partial function that checks the
value of a tasks. The function returns two values as a pair: the first value
indicates the stability of the task’s value and the second value of the pair
is the task value itself. When the observed task has no value in the given
state σ, it returns the empty value ⊥.

Figure 4.14 defines the function for all tasks. The notions σ(µ) and
σ(l) are functions that return the value of the sensor at the location µ and
the value of the SDS at the location l in the current state σ respectively.
Sometimes the value of a sensor has not been updated even once and it
yields no value and ⊥ is returned in this case.

The observations of the fail task and step combinator return an empty
value. The observation on the tasks is only done in the process of normali-

43

sation of the step combinator shown in Figure 4.17. The tasks setSds and
updSds are always reduced to rtrn v by the time their values are observed.
Thus, observations of these tasks are empty values.

V : Task × State ⇀ Bool × V alue

V(⊛ µ, σ) =

⟨False, σ(µ)⟩ when σ(µ) ̸= ⊥

⊥ otherwise

V(, σ) = ⊥
V(getSds l, σ) = ⟨False, σ(l)⟩

V(setSds l v, σ) = ⊥
V(updSds l (λx.e), σ) = ⊥

V(rtrn v, σ) = ⟨True, v⟩
V(unstable v, σ) = ⟨False, v⟩

V(t1 && t2, σ) =

⟨ b1 ∧ b2, ⟨v1, v2⟩ ⟩ when V(t1, σ) = ⟨b1, v1⟩

∧ V(t2, σ) = ⟨b2, v2⟩

⊥ otherwise

V(t1 || t2, σ) =

V(t1, σ) when V(t2, σ) = ⊥

V(t2, σ) when V(t1, σ) = ⊥

⟨True, v1⟩ when V(t1, σ) = ⟨True, v1⟩

⟨True, v2⟩ when V(t1, σ) = ⟨False, v1⟩

∧ V(t2, σ) = ⟨True, v2⟩

⟨False, v1⟩ when V(t1, σ) = ⟨False, v1⟩

∧ V(t2, σ) = ⟨False, v2⟩
V(t1 >>∗ (λx y.e), σ) = ⊥

Figure 4.14: Observable values function in mTask.

44

4.3.3 Normalisation

The normalisation semantics is used to reduce tasks and combinators once.
Same as in TopHat, it is a big-step semantics. The semantics rule e, σ ⇓ t, σ′
means that the expression e in state σ can be normalised to the task t in
state σ′.

However, this semantics is very different compared to normalisation se-
mantics in T̂OP . Tasks in T̂OP are normalised until they reach a fully
reduced form. Meanwhile, in mTask, the tasks are fully evaluated, but they
are strided only once. This allows the semantics to accept the input on tasks
that are strided once and create a system that is more reactive to the input.
Normalisation semantics also majorly influences the interaction semantics
described in Section 4.18. Figure 4.15 shows the rule of normalisation se-
mantics.

e, σ ⇓ t, σ′

N-Reduce

e, σ ↓ t, σ′ t, σ′ ⇝ t′, σ′′

e, σ ⇓ t′, σ′

Figure 4.15: Normalisation semantics in mTask.

45

4.3.4 Striding

The striding semantics is a small-step semantics used for reducing tasks and
combinators. This semantics is a part of normalisation semantics described
in Section 4.3.3. All rules are of the form t, σ ⇝ t′, σ′, which means that
task t in state σ is reduced to task t′ in state σ′.

Tasks like sensor, fail, reading SDS, return and unstable are reduced to
themselves. The task setSds is reduced to a stable return carrying the value
v—a new value of the SDS at the location l set to it in state σ′. The task
updSds also reduces to a stable return. It reads the value of the specified
SDS in state σ, processes it and updates the value at the specified location l
with the processed value, which is returned as the stable return. The notion
σ(l 7→ v) means that the value of the SDS at the location l is updated to
value v in state σ. Figure 4.16 shows the striding semantics rule for tasks.

t, σ ⇝ t′, σ′

S-Sensor S-Fail S-Update

⊛ µ, σ ⇝ ⊛ µ, σ , σ ⇝ , σ
v1 = σ(l) e[x 7→ v1], σ ↓ v2, σ′

updSds l (λx.e),⇝ rtrn v2, σ′(l 7→ v2)

S-Set S-Get

setSds l v, σ ⇝ rtrn v, σ′(l 7→ v) getSds l, σ ⇝ getSds l, σ

S-Return S-Unstable

rtrn v, σ ⇝ rtrn v, σ unstable v, σ ⇝ unstable v, σ

Figure 4.16: Striding semantics of tasks in mTask.

Figure 4.17 shows rules of striding semantics for combinators. Both
parallel combinators reduce their subtasks, and the result of the reduction
is still the combinator or, in case of S-OrLeft and S-OrRight, one of the
tasks. In T̂OP , or parallel combinator reduces to the left-most task with
the value, mTask has similar stride rule for this combinator, but the task
values should be stable in order to reduce to one of the tasks.

The step combinator observes the value of the left-hand side task and,
depending on the value, the expression resulting from the continuations is
used for the reduction of the combinator.

46

t, σ ⇝ t′, σ′

Conjunctive parallel combinator.

S-And

t1, σ ⇝ t′1, σ
′ t2, σ

′ ⇝ t′2, σ
′′

t1 && t2, σ ⇝ t′1 && t′2, σ
′′

Disjunctive parallel combinator.

S-OrLeft

t1, σ ⇝ t′1, σ
′

t1 || t2, σ ⇝ t′1, σ
′′ V(t′1, σ′) = ⟨True, v⟩

S-OrRight

t1, σ ⇝ t′1, σ
′ t2, σ

′ ⇝ t′2, σ
′′

t1 || t2, σ ⇝ t′2, σ
′′ (V(t′1, σ′) = ⊥ ∨ V(t′1, σ′) = ⟨False, v⟩)

∧ V(t′2, σ′′) = ⟨True, v⟩

S-OrNone

t1, σ ⇝ t′1, σ
′ t2, σ

′ ⇝ t′2, σ
′′

t1 || t2, σ ⇝ t′1 || t′2, σ′′
(V(t′1, σ′) = ⊥ ∨ V(t′1, σ′) = ⟨False, v⟩)

∧ (V(t′2, σ′′) = ⟨False, v⟩ ∨ V(t′2, σ′′) = ⊥)

Step.

S-StepStay

t1, σ ⇝ t′1, σ
′

t1 >>∗ (λx y.e), σ ⇝ t′1 >>∗ (λx y.e), σ′
V(t′1, σ′) = ⊥

S-StepFail

t1, σ ⇝ t′1, σ
′ (λx y.e) s v, σ′ ↓ t2, σ′′

t1 >>∗ (λx y.e), σ ⇝ t′1 >>∗ (λx y.e), σ′′
V(t′1, σ′) = ⟨s, v⟩ ∧ F(t2)

S-StepCont

t1, σ ⇝ t′1, σ
′ (λx y.e) s v, σ′ ↓ t2, σ′′

t1 >>∗ (λx y.e), σ ⇝ t2, σ′′
V(t′1, σ′) = ⟨s, v⟩ ∧ ¬F(t2)

Figure 4.17: Striding semantics of combinators in mTask.

47

4.3.5 Interaction

The interaction semantics is a small-step semantics that handles the inter-
action between the system and the tasks. The interaction semantics makes
sure that the input, in case there is any, is handled by the handling semantics
and that the resulting task is normalised by the normalisation semantics.
In case there is no input, the interaction semantics continues with task nor-
malisation. The normalisation semantics is described in Section 4.3.3 and
the handling semantics is described in Section 4.3.6.

The difference in normalisation semantics also affects interaction seman-
tics in mTask. T̂OP has input driven semantics, and the interaction se-
mantics has only one rule to handle the input and then fully normalises
the task. In mTask there can also be no input, and thus, extra rules were
added to continue with the task normalisation when no input is sent by the
system. All rules accept input i, which can either be nothing ∅ or value for

the sensor µ v. The semantics’ rules are of the form t, σ
i
=⇒ t′, σ′ and mean

sending an input i to the task t in state σ handles the input and prepares the
resulting task t′ in the state σ′. Figure 4.18 shows the interaction semantics
rules.

t, σ
i
=⇒ t′, σ′

I-HandleInput

t, σ
µ v−−→ t′, σ′ t′, σ′ ⇓ t′′, σ′′ t′′, σ′′

i
=⇒ t′′′, σ′′′

t, σ
µ v
==⇒ t′′′, σ′′′

I-HandleRepeat

t, σ ⇓ t′, σ′ t′, σ′
i
=⇒ t′′, σ′′

t, σ
∅
=⇒ t′′, σ′′

where t ̸= t′ ∨ σ ̸= σ′

I-HandleDone

t, σ ⇓ t′, σ′

t, σ
∅
=⇒ t′′, σ′′

where t = t′ ∧ σ = σ′

Figure 4.18: Interaction semantics in mTask.

The language makes use of different inputs, and it is important to provide
the grammar for them. Input can be nothing ∅, which indicates that there
was no system input, or the value v that has to be written to the location
µ. The type of value v and the type of input expected at the location µ are

48

expected to be the same. Figure 4.19 shows the possible inputs in mTask.

i ::= µ v | ∅ Input : value, nothing

Figure 4.19: Input grammar in mTask.

Function I calculates what input events the tasks and combinators ex-
pect to receive. This function is used to prove that handling semantics is
sound, meaning that all the inputs in the set of possible inputs can be han-
dled by it. As soundness of the semantics stays out of the scope of this
thesis, the function I is listed in Appendix A.2.

4.3.6 Handling

The handling semantics is responsible for handling the inputs. The mTask
inputs are values that physically connected sensors yield. In mTask, the
way inputs are handled differs a lot from what T̂OP does. The sensor task
in mTask holds the value of its location, which, for example, can be pin on
the micro controller. When a sensor’s value is updated by the system, the
value at the location µ changes, and not the value of the sensor task itself.
In comparison, editors in T̂OP hold the values, and it is important to pass
the values all the way to the editors traversing the whole tree.

The mentioned differences influence the handling semantics in mTask.
There is no need to traverse the whole semantical tree to change the value
of the sensor. It can be done in the state σ using the notation σ(µ 7→ v),
where the value v is set to the location µ in state σ. The form of the rule
for handling semantics is the following:

t, σ
µ v−−→ t, σ(µ 7→ v)

The meaning of the rule is the task t in state σ takes a sensor location µ
and an input value v, writes the value to the location and yields the task t in
the state σ. The rule considers that the input received is of the same type
as the input expected. The task t in this rule can be any evaluated task.

49

4.4 TopHat and mTask differences

T̂OP ’s and mTask’s differences start from their syntax. In T̂OP , functions
are defined in the expression category using λ-expressions, while in mTask,
functions are always defined at the top level using let-expressions. SDSs
and sensors also use the same syntactic category for their definitions. The
notion of stability is absent in T̂OP , but the mTask continuations handle
it well in the step combinator. Moreover, stability plays an important role
in the or combinator, because none of the tasks are chosen if both of them
have unstable value (or no value). All these differences in syntax mentioned
above influence the types, typing and semantic rules.

However, the unexpected, biggest and the most interesting difference
between the languages is the structure of normalisation and interaction se-
mantics. T̂OP was originally developed as a mathematical formalisation of
the TOP paradigm, while mTask is a real-world implementation of the TOP
paradigm in the domain of programming IoT devices. T̂OP ’s evaluation is
developed to be input driven and, whenever input is received and handled,
a task is fully normalised. The mTask language is tightly integrated with
the changing world, which means that even if the system still works on the
reduction of the program, it should be ready to react to the changing en-
vironment. Thus, tasks are reduced only once before interaction semantics
are checked for new input. If there is no input, the interaction semantics
continues with normalisation, if there is an input, it is handled first and then
the task is normalised. This allows the language to react to the inputs as
fast as possible, without waiting for the full reduction of the task.

Moreover, sensors in mTask turned out to be nothing similar to the
valued and unvalued editors in T̂OP despite the initial view. Sensors are
similar to the shared editors and they just hold the location of the sensor
and not the value itself. Since there are no tasks that hold values, it was
possible to simplify the handling semantics to one rule, which accepts the
location µ and the value v as the input and updates the value at the specified
location with the new one.

In the case of mTask, the name ”interaction semantics” can be changed
to something different that better represents the process of accepting the
input and normalisation. But the name was kept with regard to the research
question, because the name ”interaction semantics” is used in T̂OP and
comparison of languages is an important aspect of the thesis.

50

Chapter 5

Discussion and conclusion

In the previous chapters, the mTask syntax and operational semantics were
created on the basis of the T̂OP semantics introduced earlier. The mTask
language was syntactically described and mathematically formalised using
five different semantics: evaluation, normalisation, striding, interaction and
handling; each responsible for a certain part of language processing.

5.1 Discussion and future work

The scope of this work was description of the mTask language syntax and
creation of its semantics and the goal was reached. However, there is still
room for improving the formalisation of the language.

5.1.1 Delay and repeat

When describing the language semantics, two tasks—delay e and rpeat e—
were left out of the scope of this thesis. The tasks added a lot of complexity
to the thesis and were not formalised due to the time constraints. Formal
definition of these tasks should be considered as a future work extending the
described semantics of mTask.

5.1.2 Type preservation

To show that the semantics of the language is correct, it is important to
start with proving that evaluation, normalisation and handling semantics
preserve the types. All the semantics mentioned above should preserve the
types of expressions and tasks according to the typing rules we have created
in Section 4.1.4. Such proofs could be done in the future and they will show
whether the types are preserved according to the typing rules on all the
layers of semantics.

51

5.1.3 Soundness and completeness

To validate that the function I indeed calculates all the possible inputs, it
is important to show that the set of resulting inputs is sound and complete
in handling semantics. All the possible inputs should be handled by the
corresponding semantics to prove that the resulting from the function I
inputs are sound. Moreover, all the inputs should be complete, which means
that the function I produces all the possible inputs that can be handled by
the handling semantics in mTask. Showing that the function is sound and
complete will bring mTask closer to being fully mathematically defined and
the proves will show that semantics work correctly.

5.1.4 Verification

The work done in this thesis was done solely on paper and lacks computer
verification. In addition to the proofs mentioned above, computer verifica-
tion adds confidence that the semantics of the language was done correctly
and verifies that the proofs for type preservation, soundness and complete-
ness are correct.

5.2 Conclusion

In conclusion, it was possible to create semantics of mTask using T̂OP
formalisation as the basis. However, it required a lot of changes, which was
not possible to predict initially.

T̂OP and mTask are both simple TOP systems. We hoped that it would
be easy to make a semantics for mTask based on the T̂OP semantics, but
it appeared to be quite challenging.

The main difference that introduced the complexity of defining mTask
semantics was the difference in the drivers. The T̂OP semantics are input
driven, which means that whenever input is received, it is handled, the
program is evaluated and normalised until the task reaches its fully reduced
form using the striding semantics. This is not the case for mTask, where
input is not the event that the system relies on. When there is no system
input received by the mTask program, the semantics still continues with the
normalisation process. The normalisation semantics in mTask reduce tasks
only once and after that the input presence is checked again. The way mTask
is implemented makes it possible to program quite reactive IoT systems
and, arguably, schedule tasks more fairly. Such input handling and task
normalisation majorly influences normalisation and interaction semantics in
current work. In addition, there is a high chance that such differences will
heavily influence future work on semantics expansion and its proofs.

Another major difference between the two languages are the inputs of
the system. T̂OP uses user input from the abstract GUI, which is saved

52

to the editors or used for continuation of the tasks. In mTask, input comes
from the physical sensors at the specified location. In the syntax, sensors are
references to specific locations. This way, their values are not stored locally
in the sensor construct, but are stored in the environment. This implements
differences in the way these values are handled by the handling semantics.
This difference was somewhat unexpected, but it only simplified the handling
semantics and a general rule was introduced that covers handling input the
same way for all the tasks.

In addition, T̂OP does not have a notion of stability of values, un-
like mTask. Stability mainly influences the semantics of disjunctive parallel
combinator and step combinator. The striding semantics of the first one re-
mained similar to the striding semantics of the choice combinator in T̂OP .
However, the step combinator makes use of continuations to handle the task
value from the left-hand side and to calculate the task for the right-hand
side. The helper function to transform continuations into an expression was
introduced for the evaluation semantics. Nothing similar is used in T̂OP and
the step combinator is one of the hardest concepts introduced in the mTask
semantics. However, the need to handle stability of the values was known
from the beginning, and thus, did not introduce any additional unexpected
complexity.

In short, mTask formalisation turned out to be quite different from the
T̂OP , but it was still possible to use the T̂OP syntax and semantics as
a rough template for describing the syntax and semantics of mTask. Even
though there were some unexpected differences between the languages’ struc-
tures, the research of this bachelor thesis succeeded and the semantics for
the mTask was described.

53

Bibliography

[1] T. Steenvoorden, “Tophat task-oriented programming with style.”
Draft PhD thesis.

[2] P. Achten, P. Koopman, and R. Plasmeijer, “An introduction to task
oriented programming,” in Central European Functional Programming
School: 5th Summer School, CEFP 2013, Cluj-Napoca, Romania, July
8-20, 2013, Revised Selected Papers (V. Zsók, Z. Horváth, and L. Csató,
eds.), pp. 187–245, Cham: Springer International Publishing, 2015.

[3] S. Michels, “Building itask applications: A gui paradigm based on work-
flows,” Master’s thesis, Radboud University, 2010.

[4] T. Steenvoorden, N. Naus, and M. Klinik, “Tophat: A formal founda-
tion for task-oriented programming,” in Proceedings of the 21st Interna-
tional Symposium on Principles and Practice of Declarative Program-
ming, PPDP ’19, (New York, NY, USA), Association for Computing
Machinery, 2019.

[5] M. Rothmuller and S. Barker, “Iot the internet of transformation
2020,” Apr 2020.

[6] M. Lubbers, P. Koopman, and R. Plasmeijer, “Interpreting task ori-
ented programs on tiny computers,” in Proceedings of the 31st Sym-
posium on Implementation and Application of Functional Languages,
IFL ’19, (New York, NY, USA), Association for Computing Machinery,
2019.

[7] M. Lubbers, P. Koopman, and R. Plasmeijer, “Task oriented program-
ming and the internet of things,” in Proceedings of the 30th Symposium
on Implementation and Application of Functional Languages, IFL 2018,
(New York, NY, USA), p. 83–94, Association for Computing Machinery,
2018.

[8] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman, “Task-
oriented programming in a pure functional language,” in Proceedings of

54

the 14th Symposium on Principles and Practice of Declarative Program-
ming, PPDP ’12, (New York, NY, USA), p. 195–206, Association for
Computing Machinery, 2012.

[9] “Itasks.” https://clean.cs.ru.nl/ITasks. Accessed April 3, 2022
[Online].

[10] M. Lubbers, P. Koopman, A. Ramsingh, J. Singer, and P. Trinder,
“Tiered versus tierless iot stacks: Comparing smart campus software
architectures,” in Proceedings of the 10th International Conference on
the Internet of Things, IoT ’20, (New York, NY, USA), Association for
Computing Machinery, 2020.

[11] S. Crooijmans, “Reducing the power consumption of iot devices in task-
oriented programming,” Master’s thesis, Radboud University, 2021.

[12] N. Naus, T. Steenvoorden, and M. Klinik, “A symbolic execution se-
mantics for tophat,” in Proceedings of the 31st Symposium on Imple-
mentation and Application of Functional Languages, IFL ’19, (New
York, NY, USA), Association for Computing Machinery, 2019.

[13] H. R. Nielson and F. Nielson, Semantics with Applications: A Formal
Introduction. USA: John Wiley & Sons, Inc., 1992.

[14] M. Grant, Z. Palmer, and S. Smith, Principles of Programming Lan-
guages Version 1.0.3. USA: Scott F. Smith, 2021.

55

https://clean.cs.ru.nl/ITasks

Glossary

T̂OP TopHat. 1–3, 5, 6, 9–14, 16, 18, 21–26, 28–31, 35–37, 39, 43, 45, 46,
48–53, 57

EDSL Embedded Domain Specific Language. 8, 9

GUI Graphic User Interface. 10, 52

IoT Internet of Things. 1, 4, 5, 7, 9, 27, 35, 50, 52

SDS Shared Data Source. 2, 7, 9, 10, 28–31, 33–36, 39, 41, 43, 46, 50

TOP Task-Oriented Programming. 1, 4–9, 27, 50, 52

56

Appendix A

Appendix

A.1 Possible inputs function in TopHat

I : Tasks× States→ P(Inputs)

I(□ v, σ) = {v′ | ∅ ⊢ v′ : τ} ∪ {E} where □ v : Task τ

I(⊠ τ, σ) = {v′ | ∅ ⊢ v′ : τ}
I(■ l, σ) = {v′ | ∅ ⊢ v′ : τ} where ■ l : Task τ

I(, σ) = ∅
I(t1 ▶ e2, σ) = I(t1, σ)
I(t1 ▷ e2, σ) = I(t1, σ) ∪ {C | V(t1, σ) = v1∧

e2 v1, σ ⇓ t2, σ′ ∧ ¬F(t2, σ
′)}

I(t1 ▶◀ t2, σ) = {F i | i ∈ I(t1, σ)} ∪ {S i | i ∈ I(t2, σ)}
I(t1♦t2, σ) = {F i | i ∈ I(t1, σ)} ∪ {S i | i ∈ I(t2, σ)}

Figure A.1: Inputs functions in TopHat.

57

A.2 Possible inputs function in mTask

I : Task × State→ P(Input)

I(⊛ µ) = {v | ∅ ⊢ v : τ} where ⊛ µ : MTask τ

I() = ∅
I(getSds l) = ∅

I(rtrn v) = ∅
I(unstable v) = ∅

I(t1 && t2) = ∅
I(t1 || t2) = ∅

I(t1 >>∗ e2) = ∅

Figure A.2: Possible inputs function in mTask.

58

	Introduction
	IoT and mTask
	Research and motivation
	Thesis structure

	Task-Oriented Programming
	iTask
	mTask
	TopHat

	Semantics
	Formal semantics
	Lg semantics
	Syntax of Lg
	Semantics of Lg
	Reference to Soundness and completeness of inputs

	mTask semantics
	Syntax
	Constants and binary operators
	Expressions
	Pretasks
	Types and typing rules

	Task language
	Sensors
	Lg
	Return, unstable
	Combinators and continuations

	Semantics
	Evaluation
	Task fail and observation
	Normalisation
	Striding
	Interaction
	Handling

	Lg and mTask differences

	Discussion and conclusion
	Discussion and future work
	Delay and repeat
	Type preservation
	Soundness and completeness
	Verification

	Conclusion

	Appendix
	Possible inputs function in Lg
	Possible inputs function in mTask

