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Abstract

IoT devices have limited resources available and if we want to change code later on we
almost always need to update the firmware. One of the alternatives is using mTask to dy-
namically send tasks from a central server to the devices to interpret. mTask is currently
using plaintext for communication, in this thesis we propose a more secure communi-
cation protocol for resource restricted devices. We use the mTask system specifically
as an example of such a restricted environment. Using Elliptic Curve Cryptography for
signatures, SHA256 for hashing, and ChaCha20 as symmetric encryption, we managed
to provide integrity, confidentiality and authentication. Tasks sent from a server to an
IoT device can be verified and decrypted within a second. On slower devices such as the
Arduino Mega, it takes only around 5 seconds, which can be improved much further.
The limiting factor is the Elliptic Curve Cryptography used, contributing to almost all
computational resources used.
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Chapter 1

Introduction

1.1 Problem statement

Internet of Things (IoT) devices are becoming more and more popular. With the use
of IoT devices comes a certain risk, as these device become a potential attack vector.
The IoT devices have limited memory and computational resources, meaning security
is often a second thought. If we wish to add new functions to the device or change
functions, we may need to send new firmware. For some devices this means we need
physical access to a device, as well as needing quite some time to update the device.
Another solution is the mTask system. The mTask system dynamically sends tasks to
the IoT devices. The devices interpret these tasks. These devices, such as Arduino
microcontrollers, now can store the tasks temporarily in memory, waiting for new tasks
from a central server. This is faster than needing to do a manual firmware update each
time. Lubbers [16] described how to program all layers of IoT using mTask, a TOP
implementation for microcontrollers. Part of this is done by sending tasks as bytecode
from a faster server to the more restricted devices. Besides tasks, a device can also have
Shared Data Sources (SDS). These SDSs can also be shared with the server. The server
can then share this SDS with other devices. The mTask DSL restricts the datatypes
and uses strict evaluation. This means that we have a concise control flow, making it
interesting from a security standpoint.

Currently, the communication is done via plaintext over unsecured channels, such as
over a TCP connection or a serial connection. This means that devices by design can
be given arbitrary code to be executed by an attacker, as long as it can be described
in the bytecode. Moreover, a malicious attacker could change SDS values send to the
server. This is a problem if this means that an attacker can interact with real-world
things. Such as opening a door or enable a heater.

Most existing solutions that provide fully secured communications over an unsecure
channel require a lot of computational power [19]. In this thesis we research different
existing solutions of cryptography. We implement a solution based on security principles
given in Section 2.3. We use the mTask system specifically as an example of such a
restricted environment. Furthermore, the general performance of the system is tested.
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1.2 Structure of the thesis

In Chapter 2 it is described how mTask works, as well as how the communication is han-
dled in the original mTask system. Furthermore, some basic concepts will be described.
Chapter 3 lists the requirements that we had to keep in mind during the research. This
chapter also provides the foundation for the design choices made.

Chapter 4 first motivates design choices and explains how we use the algorithms.
Afterwards it gives an overview of the scheme and shows how we tested it’s performance,
as well as give the results. Chapter 5 lists and describes the related work. Lastly, in
Chapter 6 we will conclude the research with a conclusion and a discussion for future
work.
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Chapter 2

Preliminaries

In this chapter we give the reader the necessary context. We first give some definitions
of terms used. We then provide intuition of the system that this thesis builds upon.
Furthermore, we describe some basic cryptography principles used. There is a small
section about hardware security, which we mostly omitted during the rest of this paper.
At last, the communication channels, which we wish to secure, are described only briefly.

2.1 Definitions

Some definitions are needed first. Most of the Task definitions are taken from a paper
by Lubbers [16].

• Device, Client: These terms are used interchangeably and denote the actual mi-
crocontroller connected to the system. This can be a microcontroller, but it can
also just be a program on the same machine as the server, functioning as a client.

• Shared Data Sources (SDS): Data can be shared between the server and devices.
SDS is a solution that allows this [16].

• Server, iTasks system: This is the actual executable serving the iTasks application.
The system contains tasks taking care of the communication with the clients and
infrastructure to manage the clients.

• System, mTask system: The system describes the complete ecosystem, containing
both the server and the clients including the communication between them. De-
pending on the context we refer to either the old mTask system or the modified
system, with the security.

• Engine: The runtime system of the client is called the engine. This program
handles communicating with the server and runs the interpreter for the bytecode
representing the tasks on the client

• Lightweight Cryptography: Cryptography specially designed to be used for com-
putational and/or memory constrained computers.
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• Rogue client. A client that an attacker has full control over. It can manipulate
messages, change control flow of the client and do everything with the client. This
could be for example a compromised client.

2.2 TOP, mTask and iTask

Task Oriented Programming is a new programming paradigm, described by Achten,
Koopman, and Plasmeijer [1]. The abstract of the paper describes what exactly TOP
is. In summary the abstract described the following:

”Task Oriented Programming (or TOP) is a new programming paradigm. It
is used for developing applications where human beings closely collaborate
on the internet to accomplish a common goal. The tasks that need to be
done to achieve this goal are described on a very high level of abstraction.
This means that one does need to worry about the technical realization to
make the collaboration possible. The technical realization is generated fully
automatically from the abstract description. TOP can therefore be seen as
a model driven approach. The tasks described form a model from which the
technical realization is generated.”

iTask is the system that implements this TOP approach in the programming language
Clean1. iTask also offers a web service for the end-users with information about the
tasks.

mTask [16] is used to allow specialized IoT tasks integrated in iTasks to be run on
IoT devices such as the Arduino Uno and the ESP8266. This is done by compiling the
tasks into bytecode. This bytecode is send to a device and interpreted.

2.3 Cryptography principles

In this research we assume the reader to be familiar with the basics of cryptography. We
only give a short introduction into different terminology and technology used through-
out this paper. This includes random numbers, encryption, digital signatures, hashing
algorithms, and hardware shields.

Random numbers

Some cryptography needs true random numbers. This means that the numbers are truly
unpredictable. True randomness is sometimes hard to check, as it may be very difficult
to see whether something is truly random. Some Pseudo Random Number Generators
(PRNG) are used for non-cryptographic use. However, those are deterministic, i.e.
predictable, and thus not suitable for all cryptography. Some real-life entropy can be
used to generate random numbers, or the initial value of the PRNGS, the so called

1https://clean.cs.ru.nl/Clean
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seeds. True random means that one cannot determine the next random number, even
if we know all previous random numbers. Furthermore, if we wish a fair distribution of
random numbers, each next bit must have a 50% chance to be a 0 and 50% to be a 1.
This can sometimes be difficult, as not all noise is distributed this way. Consequently,
sometimes post processing is needed. Even when it is difficult to check if something
is truly random, we still rather use a cryptographically secure pseudo random number
generator, because cryptography often require secure random number generators instead
of PRNGs.

Encryption and decryption

Encryption is the process of turning a readable plaintext into a ciphertext, in such
a way that an attacker without the key cannot know what the original plaintext is.
Decryption is the process of transforming the cipher back into the plaintext. One can
only decrypt correctly if the key is known. There are two main flavours of encryption,
namely asymmetric and symmetric.

Asymmetric and symmetric cryptography

Symmetric encryption uses the same key for both encryption and decryption. This key
must be kept secret for all other parties not participating. Asymmetric cryptography,
also called public key encryption (PKE), uses two different keys, one for encryption and
one for decryption. Most of the time we have one private and one public key. The public
key can be given to anyone. Depending on the algorithms used, Alice can for example
use the public key of Bob to send a message to Bob. Only Bob has the private key,
meaning only he can decrypt the message. Most of the times both Alice and Bob have
their own private key. This way we get a two way channel, where Alice can encrypt with
Bob’s public key and Bob can encrypt with Alice private key.

Digital signatures

Digital signatures can be used to verify that a message is indeed from a certain person.
They can be generated with a private key. For example, Bob can sign a hash of his email
with his private key. Alice can now verify with Bob’s public key if someone else tampered
with the email. Furthermore, digital signatures can also provide non-repudiation. If only
Bob has the private key, and we know that the message is signed with the privater key,
then Bob must have send the email.

For both digital signatures as well as public key cryptography. It is essential to make
sure that the public key is indeed from the person you think it is. In a webbrowser this is
done by a chain of trust. There are several public keys stored by default in your browser
(or operating system). The corresponding private keys can be used to sign other public
keys, thus creating a chain of trust. This only works because the public keys stored on
your computer are assumed to be trusted. Another way to verify each others public key
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is to exchange a hash of the public key over a secure channel, for example in person on
a paper.

Hash functions

Hash functions take a variable-length input message and irreversibly turn it into a fixed-
size output, called a hash or digest. Cryptographic hash algorithms are secure versions
of hash algorithms. For example, changing one bit in the input should change each bit
in the output with a 50% probability. Furthermore, having different inputs results in
different outputs with very high probability. A hash algorithm is said to be collision
resistant if it is difficult to find two different inputs, that result in the same hash.

Since hash algorithms have a fixed output size and a variable length input, we can
not always prevent a collision, because of the pigeon hole principle. Generally, a hash
algorithm has a certain security against collision attacks, expressed in bits.

MACs

A Message Authentication Code (MAC) is a fixed size tag appended to a message. It is
used to check the integrity of a message. The same key is used to create the tag as well
as verify the tag. Without the key, one should not be able to do either of them.

Additionally, some MACs use a hash algorithm turn a cryptographic hash function
and a key into a MAC. There are different ways to do this. We describe three possible
MAC’s. The first one is susceptible to length-extension attacks. We will also describe
this attack. The second MAC scheme has issues if the hash algorithm turns out to be
broken. The last one is the widely used and accepted HMAC.

The first scheme is to prepend the key to the message. The issue with this is that
some underlying hash algorithms suffer from length-extension attacks. Examples of hash
algorithms that suffer from length-extension attacks are SHA256, MD5 and most other
Merkle–Damg̊ard based hash algorithms. When given a hash, one can construct its
internal state at the end of the hash algorithm, because the internal state is exactly
what the output of the hash algorithm is. In the next section we describe the attacks
that such Merkle–Damg̊ard based hash algorithms are susceptible to.

Length-extension attacks

We will first describe how length-extension attacks are an issue for hash algorithms.
Let’s say we simply prepend the key to the message and use this as our MAC.

HM1 := Hash(key‖message)

The length-extension attack now allows us to compute a new hash as follows, without
knowing the key. We first set HM1 as the internal state of the hash algorithm. An
attacker can then calculate the hash over a forged message.

HM2 := HashHM1(rogueMessage)
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Now, this is exactly the same as if a valid MAC would be calculated, but we have to
keep into mind the padding used.

HM2 = Hash(key‖message‖padding‖rogueMessage)

In our case, this means an attacker can append additional bytecode to the message.
This is solved altogether by using digital signatures instead of just a MAC in the mTask
system. In the next section we describe another solution, which can be used if digital
signatures are not an option.

MAC schemes

In the previous section we described an issue with prepending a key. Instead of prepend-
ing the key to the message, we can append it to the message, as follows:

Hash(m1‖key)

However, there is an attack possible if the hash algorithm is not very collision resistant.
That is, if we can find:

Hash(m1) = Hash(m2)

Then we also found:
Hash(m1||key) = Hash(m2||key)

There are many more variations of MAC. One widely used is HMAC, described in
RFC2104 [21]. Updates to this Request for Comments describe mostly security consid-
erations for the MD5 hash algorithm. Section 2 of RFC 2104 states:

"We define two fixed and different strings ipad and opad

as follows:

(the ’i’ and ’o’ are mnemonics for inner and outer):

ipad = the byte 0x36 repeated B times

opad = the byte 0x5C repeated B times.

To compute HMAC over the data ‘text’ we perform

H(K XOR opad, H(K XOR ipad, text))"

As we can see here, we hash twice, with inner and outer padding in between.

2.4 Hardware security extensions boards

Kristinsson et al. concluded that Arduino Duemilanove boards themselves do not pro-
vide enough entropy to be used as a random number device [14]. They show by statistical
methods that the atmospheric noise of the Arduino is mostly predictable in certain situ-
ations. They also explore different methods to extract true randomness. They conclude
that the analog pins should not be used as a source of randomness.

One of the solution for this is to use a hardware extension board. However, in this
research we wish to use as little external hardware as possible, as it can be complex and

9



limits the available pins for peripherals. Furthermore, we decided to not make use of any
algorithms that need random numbers on the devices. Nonetheless, we wish to present
the reader a general idea of what is possible.

There are hardware extension boards for some devices that can generate random
numbers. These shields can rely for example on thermal noise from a resistor or at-
mospheric noise such as electromagnetic radiation. There are many more sources of
randomness, such as clock drift or even some quantum properties such as radioactive de-
cay. Using shields fixes the randomness on our device mostly. However, one has to take
into account that an attack that can access the shield, can potentially modify the ran-
dom stream. For example, if the shield sends the results to the device via analog/digital
IO pins, an attacker can simply remove the shield and send their own numbers through
the pins. It could be that there are shields that solve this issue by preventing physical
access, or detecting when someone opens up the device. One of the hardware security
shield devices is the CryptoShield2. This open source shield can run different software. It
can run SHA256 as well as some type of Elliptic Curve Digital Signature Authentication
(ECDSA). The microchip used is the ATECC1083.

2.5 Communication channels

Before this research thesis alters the communication of the mTask system, the commu-
nication is done as described in this section. The server manages all devices. Only the
server is capable of initiating a connection with a device [16]. Multiple devices can be
connected to a server, but a device can only be connected to a single server. Only the
server should able to send tasks to a device. Furthermore, SDSs are used mostly for
communication.

In Appendix A of a paper by Lubbers more information can be found about the
communication [16]. A summary is given below. The communication starts with a
handshake. Followed by one or more of the other actions. A general overview is given
below. A lot of things changed during the development of the mTask system, below is
the version before added encryption.

• Handshake: The server sends one byte with value ‘c’ to a device. The device will
respond with 8 bytes of information.

• Send/receive mTask tasks: The server sends a request of n+6 bytes to the
device. Here n denotes the length of the bytecode send. A device responds with 3
bytes.

• Delete mTask tasks: The server sends a request of 3 bytes to remove a task.
The device responds with 3 bytes.

2https://github.com/sparkfun/CryptoShield
3http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8873S-CryptoAuth-ATECC108-

Datasheet-Summary.pdf
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• Send SDS specifications: The server sends a request of 5 bytes. This includes
the value of the SDS. Device responds with 3 bytes.

• Delete SDS: The server sends a request of 3 bytes. The device responds with 3
bytes.

• Update SDS: The server sends a message of 5 bytes. This includes the value of
the SDS.

• Publish SDS: The device sends 5 bytes to the server. This includes the value of
the SDS that the device changed. Note, in the current version one can send larger
SDS to the server. In that case the number of bytes is variable.

11



Chapter 3

Security principles

To be able to define a secure channel we will first need to discuss the different security
principles that play a role. The security principles for IoT are described in more detail
by Mahmoud et al [17]. In Section 3.1 we make a selection of the security principles we
consider most important for our research.

• Confidentiality No other party can read the contents of the messages without a
key.

• Integrity The message has not been tampered with.

• Authentication It is verifiable that a message came from a specific instance.

• Availability The system remains available for use.

• Authorization It is defined who are allowed certain tasks. This can be done for
example via permissions.

3.1 Security assumptions and scope

Unfortunately, it is not possible to research all security aspects at once in this thesis.
Therefore a scope is defined of the research. The research is oriented to the security of the
communication channels between client and server. This means that aspects such as the
physical security of devices will not be taken into account. Additionally, it is assumed
that the server is reasonably secure. That is, in such a way that key management is
taken care of as well as well as the integrity of the control flow. It is however taken into
account that the devices could be less secure overall. We assume that an attacker could
at least read everything from a device. This attack model is chosen because hardware
security is not yet very well considered in this research paper.
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3.2 Security requirements

Not all security principles are implemented. In this section our most important require-
ments are described.

• Integrity: The client must be able to verify the integrity of tasks and SDSs send
from the server. That is, it should be clear when a message has been tampered
with.

• Authentication: A rogue client should not be able to impersonate honest clients
or impersonate the server. A possible solution is to let the server and client au-
thenticate each other.

• Lightweight: The clients should not have to do lots of computations or use lots
of memory for the cryptography used.

• Other: MITM A man in the middle attack (MITM) should not be possible on
the communication channel.

• Other: Initialization vectors (IV). IVs are used to initialize encryption modes
or algorithms. Depending on the algorithm these needs to be truly random. There-
fore these should not be generated on devices. Furthermore, IV should not be
reused with the same key. For each message another IV should be used, if an IV
is needed, as most encryption schemes require this uniqueness.

There are some more requirements, which are not directly required for iTask/mTask,
but are good to have in other use cases.

• Authorization Some devices may not receive or update all SDSs. Some sort of
access control on the server would be a good addition.

• Confidentiality Confidentiality should be possible. However, making this op-
tional per message could be a compromise between security and computational
resource, depending on the requirements.

The availability security aspect is chosen to be ignored. Mostly because the resources
are very limited on the clients, making it a difficult task, requiring research on its own.
Furthermore, we leave authorization as a future research.

3.3 Device limitations and design criteria for the system

We need to use some primitives to build our protocol. Out of the existing lightweight
cryptography primitives, we make a selection based on some criteria and limitations.
The first criterion is resources. When a primitive already uses too much resources, a
protocol based on it will never be fast enough, or not fit in memory. To decide what
resources are available we first give the important specifications of the different devices.
After giving those resource specifications we will introduce further limitations, as well
as the main design criteria that were used during the development of the system.

13



Table 3.1: Maximum memory capacity of different devices.

Mega2560 Uno nano328 ESP8266

flash 256KB 32KB 32KB 512KB/1MB/4MB
sram 8KB 2KB 2KB 80KiB + 16KiB Wi-Fi
eeprom 4KB 1KB 1KB 4KB

Device resource specifications

An Arduino Uno uses the ATmega328 processor. It runs at only 16 MHz1. The processor
of the ESP8266 operates at 80 MHz2. Also keep in mind that the Arduino Uno operates
on an 8-bit architecture, while the ESP8266 has a 32-bit architecture.

The Arduino nano328 is similar to the Uno, but is physically a bit smaller. The
Arduino Mega2650 on the other hand is much bigger. It also has many more I/O pins
as well as much more memory. Table 3.1 shows the maximum memory for the devices.

3.3.1 Limitations

Besides fitting in the Arduino Uno memory, another limitation is the use of random
numbers.

Due to low entropy, generating random numbers for the Arduino seemed to be a
problem in previous research [14]. Therefore it is better to let the server handle the
generation of random numbers. Another option is to design the protocol in such a way
that the devices do not need random numbers. We made sure to select only algorithms
that do not need random numbers on the device side.

3.3.2 Design criteria

An important principle was to keep the protocol as close to the existing protocol as
possible. That is, we do not want to introduce many new messages in the protocol. Doing
so hampers backwards compatibility. Furthermore, modularity is also very important.
We wish to be able to swap out algorithms very easily later on.

1https://www.microchip.com/wwwproducts/en/ATmega328
2https://docs.zerynth.com/latest/official/board.zerynth.nodemcu2/docs/index.html
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Chapter 4

Design

In this chapter we dive into the technical details of the system. In section 4.1 we will
first introduce the algorithms we use, as well as give the reasons we decided to use them.
Furthermore, we describe how we worked towards a scheme as well. In section 4.2 we
give an overview of the protocol used for the mTask system. Lastly, in section 4.3 we
describe how we decided the parameters, as well as how we tested the performance of
the system. The results of the tests are described in section 4.4.

4.1 Design choices

In summary, we choose ChaCha20 as it is a stream cipher that uses very little memory
and is fast. ChaCha20 requires nonces instead of random IVs. Which means we will
not need random numbers on the devices. For digital signatures we use Elliptic Curve
Cryptography, with the curve secp256r1. For hashing the message before signing, we
use SHA256.

The next sections describe in more detail how and why we choose those algorithms.
Additionally, we also explain how we manage the nonce that is required by ChaCha20.
In the section after that, we describe how we provide limited forward secrecy.

4.1.1 Encryption

Before we can decide exactly what encryption algorithm to use, we must see what the
possibilities are. For encryption we have two main categories. The first category is
symmetrical key cryptography and the second is public key cryptography. Within sym-
metrical key cryptography we have two subcategories, they are block ciphers and stream
ciphers. We will describe them each individually and motivate why we choose to use a
stream cipher. In the section about public key cryptography we describe why this was
not an option for the mTask system.
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Block ciphers

Block ciphers work on encrypting data in blocks. AES for example works on blocks of
16 bytes. Thus this is the minimum size of a message that can be send.

There are several block ciphers that can be used. Cryptolux lists Chaskey[18],
Speck[4] and AES[7] as recommended block ciphers[6]. The first two are in almost
all scenarios rated high[6]. AES is rated good in execution time and RAM used.

Stream ciphers

Stream ciphers can take messages of any length. Stream ciphers do however need to be
implemented carefully, as the plaintext is XOR’ed with the stream. I.e. if we have a
nonce reuse we could leak at least partially the data with a stream cipher.

Only three lightweight stream ciphers seem to be tested by Cryptolux [6]. Trivium [8],
ChaCha20 and Snow3G. About Snow3G not a lot of information can be found and it is
rated below the other two stream ciphers on CryptoLux [6].

Public key cryptography (PKC)

In general, public key cryptography is much slower than symmetric cryptography (See
Chapter 5). As a result of the heavy computations needed, PKC is not suitable for the
use of encrypting every message in the communication channels.

ChaCha20 as choice of encryption

When using a block cipher or stream cipher, it is crucial to handle IVs or nonces. For
example, the output feedback mode (OFB) and counter (CTR) mode for block ciphers
need unique and random IVs. This is fine if the server sends the IV. However, the
device cannot generate random IV’s. When the server initiates a message sequence, we
can simply send a new IV with it. However, when a device first sends the message it
does not yet have an IV. A full nonce collapse is a bigger problem with stream ciphers,
because it uses XOR’ing we may leak partial plain text.

This includes OFB and CTR, as those modes make a stream cipher out of a block
cipher. Although nonce reuse can be a problem for stream ciphers, they do not need
padding. CBC mode requires padding, but does not have a full collapse if we have a nonce
reuse. CBC requires an IV mostly for the ”chosen plaintext attack”. CTR mode does
however only need nonces as IV. This means that we do not have to randomly generate
the IV, as long as we make sure to never re-use the IV. Thus making CTR mode very
suitable for our need. Furthermore, we can combine CTR mode with CBC-MAC. This
combined mode is called CCM mode.

When using CCM mode, we can reuse the same key for both MAC and encryption
as long as the IV used for the MAC is not the same as the nonce for the encryption.
Note that it is possible to use a static IV for CBC-MAC. Using a static IV will however
remove the ability to prevent replay attacks. CBC-MAC is not secure on variable length
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messages. This can be overcome by specifying the length of the message in the first
block, as is done in CCM.

We decided to use ChaCha20 as our choice for encryption. The first decision was
to use a stream cipher instead of a block cipher. This is done because it makes it very
easy to use per byte, rather then per block. This is very useful as the original code
was oriented towards reading per byte. Although ChaCha20 internally uses a 64-byte
size block, it is still relatively lightweight in its implementation. The main reason to
use a stream cipher over a block cipher is that we will not have to take care of mode
of operation. In ChaCha20 this is implicitly done for us, by using an internal counter.
Even though block ciphers are similar in performance, we would have to implement a
mode of operation ourselves or use an existing one. Using a block mode means that
we have to use more code. Some block modes cannot be used as they require random
numbers.

Managing the nonce

ChaCha20 requires a 128 or 256-bit key, as well as an 8-byte (or 12-byte) Initialization
Vector (IV), which is a nonce.

The IV, called nonce in this case, must be unique for each message, but must not be
random. The reason for this is that the 64-bit IV is too short to be a random number.
This is explained using the birthday paradox. Meaning approximately 232 messages are
needed for a collision in a random 8-byte (64-bit) nonce1.

Each device keeps a counter of the nonce. When receiving or sending a message
it increments the counter appropriately. The server does this as well, having a nonce
counter for each device. The communication channels are reliable, it is however possible
that a device and the server get out of sync for the nonce counter. For example, because
of a power shortage on the device during decryption. This can be fixed by doing a key
schedule. More information about key schedules can be found in a later section, but for
now it suffices to know that a key schedule resets the nonces we can use. This is because
a key schedule makes sure that the device uses a new key. Nonces only need to be unique
with the given key that is used. We do need to make sure that we will not re-use a nonce
for this key schedule however. This can be done easily by starting each nonce at 2 after
a key schedule. This way we reserve the nonce 0 and 1 for a key schedule, thus we can
always do a key reschedule.

All other numbers within the range of the nonce may be used for any other messages.
This means that the sequence of nonces are as follows: (An)endn=0 = {2, 3, 4...., (END −
2 ), 0 , 1}. Where END denotes the maximum number of messages send before we run
out ot nonces. This depends on the size of the nonce. We can reset the nonces we use
by doing a key schedule, as described later on.

As a result of the design, a key schedule may only be done once per key. This is
indeed the case, as seen in section 4.2.2. Each message needs 2 nonces, if in later versions
we need more messages reserved for the key scheduling, we need more nonces. We can

1RFC 7539: https://tools.ietf.org/html/rfc7539
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simply change the starting value for the nonce to some greater value in that case.
Having only one key schedule per key is not an issue, as we will have a new key

afterwards, which resets the nonces we can use.
Not only ChaCha20 needs a nonce. The digital signature should also have a nonce to

guarantee freshness. Although the digital signature and the encryption c.q. decryption
are very different with how they use the nonce, we decided not to use reuse the nonce in
one or the other. That is, a number may be used exclusively for the digital signature or
for the encryption. This way, we do not rely on the internal structures of the hash and
encryption. It may happen to be that the internal structure is such that a nonce reuse
between the two exposes some information. As far as we are aware, this is not the case
with the algorithms we use. However, if we wish to change the algorithms used, we may
not always be able to assume this.

By design we want to first check the authentication then only decrypt the message.
Thus the counter for the decryption is always one higher.

All of this comes at the cost of needing to have a key schedule sooner. When exactly
we do the key schedule can be easily configured. It is a trade-off between performance
and how much forward secrecy we provide.

Confusingly, ChaCha20 also uses an internal counter besides the nonce described
earlier. This is for example to allow parallel decryption of different blocks, or if we got
really big messages. We do not need to take this into account, as the number of bytes per
message will not exceed 264 (the size of the internal counter), especially in our restricted
environment this is a very safe assumption. Therefore we only look at the (nonce, key)
pairs.

4.1.2 Forward secrecy

Forward secrecy is a good property to have, as it makes sure that an attacker cannot read
back all previous messages if a device is compromised. In this section we will describe
how we achieve some sort of forward secrecy. It does not provide full forward secrecy
per message, rather until the next key schedule.

With a 64 bit nonce we have plenty of messages that we can send without a key
schedule. However, once an attacker gets access to a device, it can read all data back
of previous messages. In other words, it does not give forward secrecy. Instead, we may
use a smaller nonce and do a key schedule much more often. This way an attacker can
only read the data that is encrypted using the current key. However, we must ensure
that the previous key is destroyed.

Finding a good value for when to do the key schedule is a trade off between security
and performance. Doing a key schedule gives an overhead, as the device has to verify
the message as well.

We decided to use a counter of only 16 bits. This means that at first glance we have
to do a reschedule at nonce 216 − 2. However, a signed messages needs 2 nonces. Thus
we have to do a schedule after 215 − 1. The exact value we do this on can be changed
any time. However, 215 − 1 = 32767 messages is still a lot of messages, so we may want
to reschedule a key much earlier. Also, we still have 48 bits of the nonce left that we do
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Table 4.1: Internal state ChaCha20, using a smaller nonce.

Row
Bytes
1,2,3,4

Bytes
5,6,7,8

Bytes
9,10,11,12

Bytes
13,14

15,16

1 ”expa” ”nd 3” ”2-by” ”te” ” k”

2
3

KEY (2 rows of 16 byte each)

4 POS (internal ctr) {Version} 6 *0x00 Nonce

not need. We decided to use this to show the version of our security module, starting
with only 0 bytes in the first version (the one that is described in this thesis). Having
0 values in a nonce is not an issue. From a cryptography point of view, the full nonce
is 64 bits, whether we use it as 0 or not. As long as we do not reuse the full 64 bit
nonce with the given key it does not lead to nonce reuse. One important note must
be made. Having some way of guaranteeing which previous key was used during the
key schedule is important to have forward secrecy. There are several attacks that could
happen otherwise.

For instance, if we did not include the key in the hash, e.g. not using a version of
MAC, one could replay a previous key schedule. This is still a valid signature, decrypting
with the new key probably fails though. It could be the case that the bytes result in
correct bytecode. However, this does mean that every instruction must be valid and
pass all the strict evaluations the mTask offers. However, in other IoT systems this may
not always be the case. Thus we had to make sure that this does not happen. Similarly,
replaying a previous message with the same nonce, but another key, could also lead into
issues if we did not use a key in the hash. This is because the signature uses the same
nonce, and thus be verified correctly. Once we decrypt, we use another key than we used
during encryption in this attack. Thus the resulting plaintext on the device is different
from what was originally intended. Including the key in the hash should counter this,
as we have different signatures for each key, nonce combination.

The design choice for using smaller nonces results in the internal state of ChaCha20
looking a bit different from normal. The internal state is used to calculate the final
cipher, by applying functions to the state and plain text. From a cryptographic point
of view, the internal state structure did not change at all. However, the way we use the
nonce makes the interpretation a bit different. As the nonce is divided further up into
parts. 4.1 shows the new internal state structure, in which row four, bytes in column
13-16, differ from the original state structure.

4.1.3 Hash algorithms used

Choosing the hash function was simple. There are only a few common hash functions
that are widely used. Such as MD5, SHA0, SHA1, SHA2 and SHA3 (subset of Keccak).
MD5, SHA0 and SHA1 are considered broken. SHA3 is a good contender of SHA2,
but uses a larger internal block state and as a consequence it uses a bit more memory,
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making it a bit less usable for our lightweight solution. Should it happen that SHA2
also gets broken in practice, one can easily change the design to implement any other
hash function.

It is important to consider that SHA2 suffers from length-extension attacks. This is
not an issue for us, as we sign only the given hash on the server, and compute the hash
on the device.

For the design it was also important that it works on bytes rather than blocks, to
keep the bandwidth as low as possible. Since there are many small packets send over the
channels, adding padding would increment the bandwidth used rapidly. Luckily, most
hash functions can be updated per arbitrary number of bytes and therefore also per one
byte at a time. The signature can simply be read after the message.

However, as the metadata is read before the original message, an attacker could
change the metadata, causing the device to read more data into memory than it should.
With metadata, we mean: taskid, returnwidth, sds length, number of peripherals and
bytecode length.

Only after reading the data, the device detects that the data was invalid. A simple
solution is to first sign the metadata and then sign the actual data This however means
that we double the time it takes to verify the message. Another solution is to hard limit
the size of a task. This is already done implicitly, as the lengths are specified in 16 bit
integers. However, this could still be too much for the device to handle in reasonable
time. As not only too much memory has to be reserved, the hash needs to be calculated
over it as well. In the case we have a message that exceeds the reserved memory size,
the device will report an error back to the server, indicating that the task does not fit
in memory.

Another solution is to add a time limit. If not all the data is collected within a time,
it says that the verification fails. This however could lead to synchronization problems.
Since this research does not focus on availability of the devices, we decided to use the
implicit limitation of 16 bit integers.

We decided to first read in the metadata non encrypted, as those are apparent from
length of the cipher text anyway. However, the metadata is still authenticated! We then
request memory for the task and read the encrypted payload from the communication
channel. We verify the task over the metadata and the cipher text. If we succeed, we
decrypt the task data per byte. Otherwise we throw the task away. This method is
chosen because we need the memory anyway for legitimate tasks and availability is not
the most important requirement in this thesis.

4.1.4 Authentication

One of the main requirements to allow authentication is that we have some secret stored
on the server and device. It is assumed that arbitrary memory can be read from a
device. Either directly, via debug pins on the device or via side channel attacks. Writing
arbitrary data to the device is assumed to be much harder for an attacker. Because of
these assumptions, a Message Authentication Code (MAC), which uses symmetrical key
cryptography, will not work. An attacker could simply read out the key from the device.
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Since this will be the same key as on the server, an attacker can pretend to be the server.
Thus sending rogue tasks to a device.

This can easily be overcome by using digital signatures. The devices uses a public
key, which can be read by anyone. The private key should however be stored securely on
the server. This way an attacker cannot modify tasks, as only the server can sign tasks
and everyone with a public key can verify the task. We opted to use this authentication
method. The device will have the public key, but in principle everyone can have the
public key of the server.

There are two commonly used digital signature algorithms that are widely used. RSA
and Elliptic Curve Cryptography (ECC).

RSA is generally faster with verification than ECC [12]. Nonetheless, the perfor-
mance in other areas, such as creating keys and signing is slower [22]. The performance
on AVR platforms is not that clear and there are currently no easy to use and good
RSA implementations for AVR devices. Furthermore, RSA uses much more SRAM than
ECC, meaning a device will run out of SRAM very quickly. Rather than writing diffi-
cult implementations ourselves, we use libraries found. We decided to use MicroECC as
library for ECC2. We use the curve secp256r1 with the given library. This can easily be
changed to other curves with compile settings for the library used.

Instead of doing all the computations over the full raw message, we only do it in the
end over the application data. This makes it possible to use it for different communi-
cation methods. Such as TCP, Serial connection and Bluetooth. This makes sense, as
we should abstract away from the underlying transport layer. We only encrypt parts
of the application layer. Furthermore, using a hash at the end rather than using the
full message for signing and verify is common practise. Signing and verification is very
costly, thus doing it over a smaller portion of the message is also preferred.

Message Authentication Code.

Ensuring that a message has not been tampered with can be done using a MAC. A
receiver can check if the MAC corresponds to the message received. This gives a message
integrity. There is however a special security requirement that makes using a MAC more
difficult. We must have some sort of authentication on messages send from the server.
Even if we recover the keys from a device, it must not be possible to send a task to that
device. This comes from the attack model assumption we use. The assumption is that it
is easy to read out any data from the device. However, writing to a device is assumed to
be much harder. A MAC provides integrity, but it does not provide any authentication.
Therefor it is not something we can use on a device to check if the server indeed sent the
tasks. In future versions it may be possible to add a MAC to less important messages.
This way we at least guarantee integrity for a man in the middle without access to the
device.

We decided to use Micro-ECC as library for the signing and verification of messages,
because this library uses faster curves, making it suitable for restricted devices. When

2https://github.com/kmackay/micro-ecc
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choosing a curve we keep in mind that NIST does not recommend a key size of less then
224-bit for ECC [9].

For the symmetric cryptography and hash functions we used Arduinolibs3. Unfor-
tunately, this library is written in C++, meaning it will not work on all devices. Some
devices do not work well with C++ compilers. Since we only need one state for SHA256
and ChaCha20, this was easily converted into a C implementation by only changing it
from a class to global functions and states. There are lots of different implementations
of SHA256 and ChaCha20 for the devices, we choose to use the given library because it
implements many different algorithms, making it easy to switch algorithms during de-
velopment in case we wish to see differences. A drawback is that it is not as optimized.
Luckily we abstract away from any third party libraries used. One can simply change
the library, only changing the wrapper functions in Security.h and Security.c to call the
new library instead.

4.2 Scheme

In this section we describe how we use the different algorithms to build a scheme. We
first describe how we initiate connections and handle initiation. We then describe how
we do a key (re)schedule. Lastly, we describe our main interest, sending tasks to a
device.

4.2.1 Sending specifications

Only the server can initiate a connection. The servers starts the connection by sending
a message to the device. The device responds with what its supported features are. For
the peripherals it responds with one byte to indicate if a certain peripheral is supported.
We keep the original message flow similar to the original mTask system.

Figure 4.1: Initial handshake.

The SPEC SEND message is changed at first. The first 5 bytes stay the same as earlier:
MTFSPEC, MEMSIZE (2 bytes), APINS and DPINS. After these bytes, normally a device sends

3https://github.com/rweather/arduinolibs
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which peripherals are supported. Per peripheral, one byte is sent, having value 1 if the
given peripheral is supported by the device and a 0 otherwise, the other 7 bits are not
used in the previous version. To keep backwards compatibility, we cannot send more
bytes, as the server would not know how many bytes to receive from the device. Instead,
if the device supports security it will modify the first byte of the first peripheral. It will
send 0b11 if the first peripheral is supported and 0b10 otherwise. The extra bit is thus
used to indicate that the device supports the new security extension. Once the server
gets this response, it knows it has to use the security extension as well.

By choosing this method we can also allow multiple versions of the security module
if ever needed. Simply using the other bytes of the peripherals as well, or even using one
bit to indicate that the device will send more bytes afterwards.

The original task message looks as follows, where the get function is denoted to
indicate that it is the actual bytes (with variable length).

• taskid: A unique task id. Used to identify task. For instance removing tasks.

• returnwidth: The length of the return value in bytes. During evaluation, a task
may communicate it’s value to the server.

• sdslen: The number of bytes the SDSs takes up in the message.

• peripherals: The number of bytes the the peripherals data send in this message.

• bclen: The length of the bytecode that is includes in this message.

• get(sdsbytes): The actual SDS data that is included in the message. This way,
devices are immediately up to date with the SDS information.

• get(peripherals): The peripherals data. This is also called hardware. For example,
setting up certain sensors, such as a heart rate sensor.

• get(bytecode): The actual bytecode. The device interprets this data.

4.2.2 Key schedule

Once we run out of nonces, we need to do a key schedule. Should it happen that the
server and client get out of sync, for example because of power outage of the device, one
must do a key schedule as well. Doing a key schedule often also reduces the chance that
leaking a key results in all messages losing confidentiality. Note that only the server can
initiate a key schedule. The public key of the server on the device can for now only be
set at compile time for the device. The first symmetric key that both the server and
device uses should also be stored during setting up the device.

When a key schedule is initiated, the server will simply send the following bytes to
the device:

hash := sha256((nonce=1, symkey) || newkey)

signature := sign{hash}

Message := MTTKEYSCHEDULE || Ek(nonce=0){newkey} || Signature
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The nonce and symkey are appended before the other parts of the message.

Figure 4.2: Key schedule. Server to device.

The device itself is not able to request a new key. This is for several reasons. First
of all, securing the request for a new key is difficult, as a device cannot sign messages
the same way as the server does. Due to memory and computational limitations, the
sign function is not implemented on devices. Using an HMAC is possible, but it is much
easier to not allow the device to request new keys in the first place. The only drawback
is that a device may run out of nonces when it wants to send a message to the server.

This is currently not an issue, as the client and server communicate often enough in
both directions. Allowing plenty of opportunities to do a key reschedule. Additionally,
there is another easy solution if we can assume that the communication channel takes
care of reliability. Once the server notices that the nonces run out on the device, it
can send a key schedule. The device still must make sure that it does not send new
messages. The device must wait for a key schedule once it runs out of nonces, the server
must notice this based on its own counter. Since we only specify the maximum number
of message send before a key schedule, the server could even decide to send a new key
much earlier. This assures that the device will not have to wait long.

4.2.3 Sending tasks

Sending tasks has changed a lot more. We need to store tasks in the device memory
before we can use them. Tasks must now be verified and decrypted as well. Metadata
is not encrypted in tasks, but they are still verified. We first describe how tasks are
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stored in the memory, then we describe how the different algorithms work together to
provide encryption and authentication. Lastly, we describe the encryption in even more
detail, as a lot of design decisions had to be made for making sure the requirements of
the encryption algorithm are met.

Storing tasks

Since we need to store the task in memory before we can interpret the bytecode anyway,
we decided to first read out the task in memory fully. This is done as usual in the mTask
system, using mem alloc task, thus no extra memory is needed to store it. However, at
first we load in the encrypted data. We then verify the authentication of the message
later on, but before using the message. The metadata is not encrypted, this includes,
taskid, sdslen, returnwidth, number of bytes in bytecode and number of peripherals
and bytes used for SDSs. The metadata is however included in the verification hash and
thus authenticated.

Communication of sending tasks

Figure 4.3 describes the task communication. After the device received the message
and signature, it will start to verify this message. In summary, the message consists of
non-encrypted metadata, an encrypted message and a signature. The device checks the
signature and either accepts or rejects the message.

Figure 4.3: Sending tasks.
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cipher := Ek(Nonce){get(sdsbytes) || get(peripherals) || get(bc)}

taskMessage := (taskid || returnwidth || sdslen ||

peripherals || bclen || cipher)

hash := sha256({nonce+1, symkey} || taskMessage)

verified := Verify(Pk_server, hash, signature)

The notation Ek is used to denote encrypting using key k. In this case, it is a symmetric
key, meaning both the device and server share this key. The Pk-server is a public key,
meaning everyone may have this key. Only the server has the private key, used for
signing the hash. The server follows a similar scheme when encrypting, but instead of
verifying the signature it computes the signature and sends it together with the message.
The || indicates appending. Note that with a hash algorithm, it does not matter if we
append the message before we call the hash function, or if we call hash update on the
first part, then on the second part. That is, the following lines give the same result:

// Doing t h i s
hash update ( a . append (b) ) ;
// I s the same as doing :
hash update ( a ) ; hash update (b) ;

4.3 Experimentally decided parameters

4.3.1 Experimentally decided parameters

There are lot’s of options to compile the code into the device assembly code. Depending
on what settings we use, we will get different performance results. The Arduino Uno has
limited memory, so we wish to optimize for that. In contrast, the ESP8266 has much
more memory, so we may optimize for speed. To know if the system works on a given
device, as well as find the performance bottlenecks, we have to do some experiments.
We first test the full system, to see if the entire code fits on the device. We then test
the speed of the different algorithms used. Both to verify earlier reported results as well
as to test on specific devices.

Full system

There are several compile options. Not only does each different device need different
compile settings, the libraries used in the implementation do as well. In the Gitlab
repository one can find memory-benchmark.py4. This file runs the makefiles and reads
the output to determine memory usage. This is statically computed by the compiler. It
reports the total of the entire mTask system, including cryptography.

We decided to not test all devices that mTask supports. This is because it would
be a lot of work and the mTask system we build upon does not support all devices.
Furthermore, including all devices does not generate more benefit. For devices with

4https://gitlab.science.ru.nl/mlubbers/ mTask/-/tree/CryptoBranch
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much more memory, it would make little sense to include them, as we do not have
to worry at all about memory on those devices. For example, when compiling on the
Arduino Mega2560 and ESP8266, it fits easily on the device.

Only the Arduino Uno is included in this experiment. For the ECC library we will
test only secp256r1 and secp256k1.

We do not consider the use of the other curves. secp256r1 and secp256k1 are con-
sidered. This is because of the key length in the other curves. 160 is already legacy
according to NIST [9]. Thus we will consider only the 256 bit versions. The memory
benchmark code included can be easily changed to show the other functions as well.
Keep in mind that one has to make sure that mTask still compiles correctly with those
different settings.

Furthermore we also test with and without the custom square function defined in
MicroECC. defining:

ECC_SQUARE_FUNC=1

Also, we test with different assembly optimizations. MicroECC has three types
supported. ASM none means that we will use c code without inline assembly for op-
timization. This means we rely fully on the compiler to optimize for us. The second
option is ASM small, this means that we use the small inline assembly code, optimized
to use as little program space as possible. The last one is ASM fast, however during
writing the code it turned out that ASM fast has several issues with compiling for some
devices. The ESP devices have much more memory than the Arduino devices, thus we
did not include them in the test.

The secp256k1, a Koblitz curve, is used by Bitcoin. The difference between secp256k1
and secp256r1 are described by Bjoernsen [5]. In the next paragraph we summarize the
paper.

Bjoernsen that the Koblitz curve could be a few bits weaker, but that it does not
matter much with the 256 bits. secp256r1 is a curve by NIST. A reason that Bitcoin
did not use secp256r1 is because the curve has random numbers in it. It is not clear
where those numbers came from. However, other sources list that these numbers are
truly chosen randomly5. Nonetheless, the wide use of the curve makes it unlikely that
the random numbers are chosen for a backdoor. Secp256k1 has so called nothing up my
sleeve numbers, meaning that it is transparent how they are chosen.

Note however that changing what curve is used in the implementation is as simple
as changing one line of code in the server code and changing the compile options for a
device.

SHA256, ECC and ChaCha20: separate speed test

Instead of testing only the entire system, we also wish to test individually parts. This is
done by isolating the algorithms. This way we can see where the biggest speed bottleneck
is. For this part, we only test with the Arduino Mega2560 and the ESP8266. We use the

5http://www.secg.org/sec2-v2.pdf
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Arduino IDE for this, with a module installed for the ESP8266. We use the non-static
branch for Micro-ECC, as it can be installed as a library.

4.3.2 Optimize flash usage

The memory on the devices is very limited. A first step is getting the protocol working,
but for some devices there is not enough memory available without optimizing the code
further. This research did only a very limited look at optimizing the flash usage.

4.4 Results

In this section we will give the results of the different experiments. We start of with
the full system memory usages, after which we will describe each cryptography used
separately.

Total memory usages (Full system)

In table 4.2 the total memory of the system is explained for the Arduino Uno. Other
devices are excluded. One can easily add more devices in the Gitlab repository6

Table 4.2: Arduino Uno memory usage for the full mTask system.

device curve sqrt asm flash data

Uno 256r1 0 none 107.4% 97.5%
Uno 256r1 1 none 105.4% 97.5%
Uno 256k1 0 none 102.3% 97.5%
Uno 256k1 1 none 103.6% 97.5%
Uno 256r1 0 small 106.8% 97.5%
Uno 256r1 1 small 104.5% 97.5%
Uno 256k1 0 small 101.1% 97.5%
Uno 256k1 1 small 101.7% 97.5%

The device column specifies which device we run the test on. In our case we tested
on the Arduino Uno only, but one may add more devices in memory-benchmark.py later
on. The curve specifies which curve we use for the signatures. The sqrt column is 1 if we
use the optimized square function. The asm column is used to indicate what assembly
optimizations we use. Flash memory used is how much memory the device uses in total
to store the code. The data is how much SRAM the device uses for the code.

MicroECC speed performance

We get an average of around 0.57 seconds over 20 runs on the ESP8266, using the
secp256r1 curve.

6https://gitlab.science.ru.nl/mlubbers/mTask/-/tree/CryptoBranch
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Table 4.3: SHA256, bytes processed and speed. The bytes are processed at once.

Bytes Mega256 ESP

32 11 (ms) 0.09 (ms)
64 21 (ms) 0.17 (ms)
256 53 (ms) 0.4 (ms)
2048 351 (ms) 3 (ms)

Table 4.4: ChaCha20 encryption/decryption on the Arduino Mega2560.

nr Bytes Time

10 3216 µs (3ms)
100 6439 µs (6 ms)
120 6466 µs (6 ms)
4096 200 (ms)

We get an average of around 5.18 seconds over 20 runs on the Arduino Mega2560,
using the secp256r1 curve and the non-static branch.

For the Arduino this is around twice as slow as reported on MicroECC static branch.7

SHA256 speed performance

SHA256 can update in different ways. One could update SHA256 one byte at a time,
or send a big message at once. The difference is very small. On the Mega, 2048 bytes
takes 366 ms with doing it one byte at a time and 351 ms if done at once. For smaller
sizes, e.g. most tasks, it differs less then one millisecond.

The library we used also tested the performance with similar results 8.

ChaCha20 speed performance

The ESP8266 had memory alignment issues with compiling using the Arduino IDE and
is thus excluded in the results. Furthermore, ChaCha20 uses 20 rounds and setting the
IV/key is included in the results. For this, a 256 bit key used. It takes around 16 µs
on the ESP8266 and around 100µs on the Arduino Mega to just set the IV and key.
Because ChaCha20 is a stream cipher, calling the decryption function results in a direct
call to the encryption functions and thus has similar performance.

At first glance, this is much slower than described by the library we use9. However,
keep in mind that the performance is in multiple of 64 bytes. After each 64 bytes we
compute the next block.

7https://github.com/kmackay/micro-ecc/tree/static.
8https://rweather.github.io/arduinolibs/crypto.html
9Arduino Uno performance: https://rweather.github.io/arduinolibs/crypto.html
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Chapter 5

Related Work

There are several categories within cryptography. There are papers about public key
crypto, symmetric crypto, (secure) hash functions, Message Authentication Code func-
tions (MAC) and random number generators. Lastly, there are encryption schemes that
combine those to offer one or more security requirements. We will describe different
existing research about the algorithms, as well as some encryption schemes used for IoT.

Public Key Cryptography (PKC)

Zhang et al. describe ongoing challenges for each of the security principles we described
in Chapter 2 and other challenges in IoT security [23]. It is mainly focused on public key
cryptography. One of the key problems is that the devices cannot be trusted, a shared
key can be assumed to be compromised at some time. In some applications this is a
good compromise, but we assumed that the IoT devices are not very secure.

In a further section of Zhang’s paper some crypto schemes are explained that use
some sort of PKC. In general, the performance costs of PKC seems to be too high for use
in all communication of the mTasks system. In ECDSA on things [3] there is a list how
they did digital signature authentication on IoT devices. The authors present a solution
for the slow signing. Instead of signing every message, it only signs a message once every
5 seconds. The paper did not succeed in finding a solution for a device with only 8KB
RAM and around 60KB flash memory. They did however managed to implement it for
the 32bit CC2538 chip, which has 32KB RAM.

Symmetric Key Cryptography (SKC)

Alassa et al. give an overview of lightweight symmetrical key cryptography [2]. In the
paper an overview is presented of the clock cycles used per byte of encoded data as
well as memory used. It appears that symmetric key cryptography offers reasonably
fast encryption of data. Note that SKC does not in itself provide any other security
requirement such as integrity.

The webpage of CryptoLUX[6] shows the performance of different cryptography
primitives. It describes a small MAC for IoT devices and is deemed very suitable for
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our need. Chaskey [18] and AES [7] are shown as best in the comparison for small code
size and RAM.

Instead of using a dedicated stream cipher, it is possible to build a stream cipher
from a block cipher. This way we do not need the decryption function of the block
cipher. Another benefit is that we do not need padding. It is however crucial to make
sure that there is no nonce violation. Moreover, some block ciphers have an even harder
requirement for the IV. For example, a block cipher in CTR mode must make sure that
it has random initialization vectors (IVs) in order to have confidentiality.

Encryption schemes

Liu et al. describe existing authentication and access control methods in their research
paper [15]. They make it feasible for IoT. Just like the mTasks system it uses one
authority, the server. The proposed protocol for authentication only is already quite
elaborate. The protocol allegedly can prevent eavesdropping, man-in-the-middle, key
control attacks and replay attacks. According to the paper it uses a PKC-based scheme,
which suffers from high energy consumption and considerable time delay.

He and Zeadally show heavyweight, middleweight and lightweight Elliptic curve cryp-
tography schemes in their paper [11]. For each of the schemes it is shown what security
requirements are met. Although a lot of possible schemes are described, the computa-
tional cost is still too high.

Keoh et al. describe a new scheme, DTLS [13], which is similar to TLS. The total
RAM used (state machine, crypto, key and DTLS record layer) is 3.9KB. It is not as
suitable for mTask because of the complexity and the resources it uses.

Hammi et all describe how a wireless sensor network can use a security protocol that
is lightweight and secure [10]. The data is encrypted and authenticated. It does however
use symmetric cryptography only, making it not suitable for our attackers model.

Sadio et al. propose an MQTT solution that uses chacha20-poly1305 [20]. chacha20-
poly1305 is AEAD, which means that it also authenticates the data. It works for the
Arduino Uno. The AEAD version for Arduino uses 654 bytes RAM. Encrypting or
decrypting 8 bytes takes 2-2.5 seconds. 64 byte takes a bit over 3.5 seconds. This
research is very promising, but it is already a bit on the computational intensive side.
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Chapter 6

Conclusion and discussion

In this thesis we aimed to provide a lightweight cryptography protocol for the use in the
communication channels for IoT devices. Especially, we aimed to build such a solution
for the mTask system. We were able to provide mTask with a more secure version for
communication of tasks. The performance is very reasonable for the encryption and
hashing.

The biggest speed penalty and also the memory penalty, is in the MicroECC library.
Taking our own data into account, the theoretical time of signing a relatively sized task,
around 256 bytes, takes between 5-6 seconds. A few seconds is not very fast for a modern
computers, but for IoT devices this time is often very reasonable.

The best parameters to use for the system is curve secp256k1, using small assembly
with the separate (faster) squaring function disabled. This full system does not yet fit
in the Arduino Uno memory, as it needs 101.1% of the memory.

Signatures provide a way of authentication, but with slight adjustments, one could
use HMAC instead of signatures, for example for SDS and other less important messages
like the device specs. This should improve timing much further.

The target code size is very close the one we achieved. Only barely not fitting on
the Arduino Uno board. With a little bit of effort we think that it is feasible to get it
working on the Arduino Uno.

During experimenting, we were not able to get the static MicroECC branch working
on the ESP8266 within reasonable time. This was due to issues with makefile for ESP.
Instead, we decided to use the non static branch for testing. To still have a fair com-
parison, we decided to use the non static version for Arduino as well during testing the
ECC speed performance. This provided results twice as slow as reported by the library
used itself. Nonetheless, it gives a reasonable expectation of speed. It will not be very
fast on the restricted devices, but not very slow either depending on the usages.

More surprisingly, the ESP8266 did not perform as well as initially thought. Having
a 32 bit architecture as well as having a clock speed 5 times as high a the Arduino Mega,
it only performed 10 times as fast. This could be due to the MicroECC library not
having optimizations for the ESP8266,
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Chapter 7

Future research

There are still several parts that can be research much further. This research did not
focus on the availability of the devices. It may be possible to improve a lot on this area.
Another improvement could be to improve the memory and computational resources
used by the algorithms used in this research.

One of the most important improvements is to add the security to more messages
in the communication channel. Currently, only tasks are using the security module.
Implementing the other other communication should be straightforward, as the com-
munication is very similar to the task communication. One could research if using a
HMAC instead of a signature for other communication messages may be faster and still
secure enough. Note that using asymmetrical cryptography for sending the tasks is still
a requirement.

Furthermore, the codebase could be improved much further. Things such as main-
tainability needs to be improved. Storing keys and nonces on the server or device for
use after a power outage or reset is not implemented. The key is relatively small and
to mitigate for the limited number of writes the EEPROM can sustain, cycling through
memory is a feasible way to store the key and nonce.

Additionally, error handling is not yet done well. This is mostly related with the
availability aspect. Not every error is sent to the server.

Lastly, more research into the area of asymmetric key cryptography could help a lot
with improving the speed of cryptography schemes on IoT devices.
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