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Abstract

This thesis introduces a system for asynchronous communication in the iTasks framework. The
framework is written in Clean, a pure, lazy, functional language. Tasks need to be able to access
data in the system and retrieve data from all kinds of data sources. The share system allows
tasks to read arbitrary data sources and provides a simple interface that allows composition of
different data sources. This system allows tasks to share and store data in an efficient, re-usable
way.

A disadvantage of the share system is that it does not allow asynchronous evaluation. When
one task is using a share, other tasks have to wait for the full evaluation of this share before they
can be evaluated. This has the effect that users in the iTasks framework must wait on other
users. This results in poor user experience.

We implement a share system which, by way of share rewriting, allows asynchronous evalua-
tion. The system can be used to communicate with arbitrary services on the internet, as well as
to communicate between different iTasks servers in a distributed context.

We show how asynchronous shares are implemented and what the limitations are. We also
show multiple practical examples of using asynchronous shares. The new system can be effectively
used to consume services on the internet. It fits nicely into existing iTasks programs and requires
few changes in existing programs.
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Chapter 1

Introduction

The goal of software frameworks is to make it easier to write software. The framework abstracts
away from certain tedious details and allows the programmer to focus on the functionality of
the software they are writing. A framework provides a foundation on which to build extensive
applications, directing the programmer to solve problems in a certain way.

The iTasks framework [14, 15] is an implementation of Task Oriented Programming (TOP),
a paradigm that focusses on abstract task definitions. These tasks can be combined and se-
quenced into bigger tasks, forming workflows and fully executable programs. TOP is a declar-
ative paradigm: Tasks are specifications of what needs to be done instead of specifications of
how it should be done. The iTasks framework is written in Clean [16], a pure lazy functional
programming language.

The iTasks framework is an implementation of TOP focussed on building web apps. This
entails, amongst other things, that programmers do not have to worry about the details of man-
aging application state or communication between clients and servers. They do not have to worry
about HTML, CSS, or JavaScript. They can build task specifications which are automatically
converted into graphical user interfaces. The framework also provides ways to do distributed
computing, by supporting tasks to be shared across different machines.

An example of such a specification is a simple program to enter a date and time into the
system, which is then displayed to the user:

enterDateTime :: Task [(Date, Time)]

enterDateTime

= enterInformation "Enter a date and time" []

>>= viewInformation "You Entered:" []

Here, the necessary GUI elements are generated automatically by the system. The transition
between entering the information and viewing the result is handled by a continue button. Se-
quencing tasks like this forces the programmer to divide the work flow into separate steps which
yield a result. It is also possible perform tasks in parallel.

The main building blocks of the iTasks system are editors, task combinators, and Shared
Data Sources (shares).

A task can be a simple piece of work for a user (enter a number), a piece of work for the
iTasks server (send a message to a certain network address), or a combination of multiple other
tasks. A task is a state transformer function, continuously evaluated on the basis of events.

Task combinators are used to combine multiple tasks. The >>= combinator in enterDateTime

is the bind operator: It feeds the result of one task into a function to create another task, creating

1



2 CHAPTER 1. INTRODUCTION

(a) Entering dates and times
(b) Viewing the entered result after using the con-
tinue button.

Figure 1.1

a bigger task with the type of its second argument. Combinators can also be used to perform
tasks in parallel, or to attach actions to the user interface of a task.

Editors handle user interaction in tasks. In the example of enterDateTime,
enterInformation returns a task. This task uses an editor under the hood to generate the input
fields shown in Fig. 1.1. The editor is responsible for handling user interaction and maintaining
state between the client and server. Editors are not the focus of this thesis, so we will not
consider them further.

Shares are what allow tasks to store and retrieve data in iTasks. They can also be used as a
means of communication between different tasks. For instance, task A might communicate that
the user has entered the number 14 into a field, which may be used by task B to calculate 14!
and display the result to another user. A disadvantage of this share system is that storing and
retrieving data is done in a synchronous way.

It is possible to use iTasks in a distributed context. This entails that there are multiple
machines which run an iTasks server. Tasks can be shared between these machines. One machine
may be too busy and delegate the execution of a task to another machine.

1.1 Problem Statement

The iTasks framework is used more and more to communicate with external data sources. Tasks
might retrieve data from the internet or connect to an external database. These data sources
cannot be relied upon to reply in a timely manner, or to even reply at all. We want to provide an
abstraction so that external data sources can be used more easily. A mechanism is needed that
can handle communication with these sources while handling delays and errors in communication.
In this document, we introduce a modification of the iTasks system that allows asynchronous
evaluation of shares. This in turn allows asynchronous communication with all kinds of services
on the internet as well as between iTasks servers. The modification consists of a new version of
the share system.

1.2 Structure

In the next chapter, we will dive deeper into the iTasks system. We assume proficiency with the
Clean programming language. We will explain what tasks are, how tasks can be composed using
task combinators, and how tasks are evaluated. Then, in Chapter 3, we explain the share system:
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The different kind of shares, the operations that can be performed on shares, and the semantics
of these share operations. Chapter 4 explains a small but essential modification of the share
system, namely a different way of expressing shares. Understanding this change is necessary to
understand the main contribution of this document.

Chapter 5 introduces the extension which allows asynchronous evaluation of shares and how
this can be used to connect to the internet. We first show the idea behind asynchronous shares
and motivate the chosen solution. We also show multiple applications of the asynchronous share
system. The following chapter describes how communication between iTasks servers is achieved.
This chapter also includes multiple examples.

Chapter 7 summarizes the work, discusses the current limitations and possible improvements,
and relates the work to other solutions to similar problems.
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Chapter 2

iTasks

2.1 Tasks

A task is an state transformer function which is evaluated continuously when events are received
for that task. Executing a task function always yields a new version of the task. This new version
is used the next time when the task is evaluated. Evaluating a task produces a task value.

NoValue

Unstable

Stable

Figure 2.1: Different state transitions of a task value.

A value can either be stable or unstable. A stable task value is guaranteed to remain the
same in the future. Note that it is possible for tasks to never reach a stable result. A task can
either result in a value, or in no value. When it results in a value the stability of that value
expresses whether the given value can change in the future. In the case of a stable value the task
guarantees that future evaluations of the task will yield the same value. Figure 2.1 shows this as
a state diagram.

A task is evaluated when an event is received by the system. For user tasks, such an event
could be the user entering a value in a text field in their browser. For a task which communicates
with an external service, such an event might be received when the service sends some data to
the iTasks server.

An iTasks server can contain multiple tasks which are waiting for events to be evaluated.
Multiple users can connect to a server in different browsers and perform different tasks. Tasks
are evaluated sequentially. This entails that there is an event loop. This loop waits until one
or more events are received and handles the events one at a time. The iTasks system is thus
always evaluating at most one task at any given moment. The iTasks framework is designed
with the idea that task evaluation is quick. To the end-user, it may seem that multiple tasks are

5



6 CHAPTER 2. ITASKS

evaluated in parallel because task evaluation is near instantaneous. The client code for iTasks
does run asynchronously.

The following functions are often used to create tasks:

enterInformation :: String [EnterOption m] -> Task m | iTask m

updateInformation :: String [UpdateOption m m] m -> Task m | iTask m

viewInformation :: String [ViewOption m] m -> Task m | iTask m

enterInformation generates a user interface according to the type m. This user interface
lets the user fill in a form in their browser. updateInformation lets the user fill in a form in
their browser using existing data. viewInformation is used only for viewing data.

The String parameter is used as the title to the generated user interface. Each of these
functions is also supplied with a list of options. Options can change the way data is displayed to
the user, or the way data is entered by the user.

Note that there are type restrictions. In enterInformation, the type variable m is restricted
by the iTask class. This restriction ensures that the required functions are available to generate
user interfaces. Note that the actual functions in the iTasks library are slightly different. They
include more type restrictions. These restrictions are not essential to understanding the iTasks
framework, so we leave them out.

2.2 Task Combinators

Tasks can be combined using combinators. These combinators express relations between tasks.
For instance, one might want to execute two tasks sequentially, or in parallel. See the following
listing for an overview of the most important combinators.

// Bind operator for Tasks.

(>>=) infixl 1 :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b

// Decorates the left task with continuations.

(>>*) infixl 1 :: (Task a) [TaskCont a (Task b)] -> Task b | iTask a & iTask b

// Continues only when the left task has a stable value

(>>-) infixl 1 :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b

// Continues when the left task has a stable or unstable value

(>>~) infixl 1 :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b

// Do both tasks in parallel, yielding the result of the task that yields

// a value first.

(-||-) infixr 3 :: (Task a) (Task a) -> Task a | iTask a

// Do both tasks in parallel, yielding the result of the right task.

(||-) infixr 3 :: (Task a) (Task b) -> Task b | iTask a & iTask b

// Do both tasks in parallel, yielding the result of the left task.

(-||) infixl 3 :: (Task a) (Task b) -> Task a | iTask a & iTask b
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// Do both tasks in parallel, yielding the result of both tasks in a tuple.

(-&&-) infixr 4 :: (Task a) (Task b) -> Task (a,b) | iTask a & iTask b

Note that the >>* combinator that allows attaching a list of continuations to a task. An
example is the OnAction continuation.

task >>* [OnAction ActionContinue (always t)]

This continuation attaches a continue button to the task. Upon clicking the button, users
will start working on the task t. OnAction allows inspecting the current value of task in order
to determine whether there is a rest task. In this instance, we always move to task t.

The task functions mentioned earlier can be combined using these combinators. See the
following task collectUserInformation:

collectUserInformation :: Task UserInformation

collectUserInformation

= ( enterInformation "Enter a name" []

-&&-

enterInformation "Enter a phone number" []

)

>>= \info. viewInformation "Personal details" [] info

>>| enterInformation "Enter a address" []

@ UserInformation info

This task allows the user to enter a name and a phone number at the same time. It shows
these details. When the user clicks the continue button, the user is asked to enter an address.

2.3 Shares

Some task combinators can be used to communicate values between different tasks. The bind
combinator >>= communicates the stable value of the left task to the right task function. This is
not always convenient. To communicate in that way makes it difficult to persistently store task
values. It also complicates defining tasks because the programmer must always ensure that the
required information is in scope. Sharing data between tasks which are otherwise unrelated is
impossible. In iTasks, another mechanism is available to achieve communication between tasks.
Shares are functions which allow tasks to access (possibly persistent) data. This data can either
be available on the iTasks server, or available from other data sources like a database.

This thesis focusses on the share system. In the next chapter, we explain more thoroughly
what shares are and how they can be used.

2.4 Task evaluation

Users of an iTasks program use their web browser to do their work. The program, depending
on the URL, will add a new task instance to the environment for the user session. For example,
when a user navigates to the /pizza endpoint, an instance of the “order a pizza” task is added.
When a user navigates to the /pay endpoint, an instance of the “pay a bill” task is added.
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These instances are added and started immediately. Starting an instance initializes the task
instance state and generates a user interface when applicable. Not all tasks have a user interface.

The task instance is re-evaluated based on events. One possibility is that the user has edited
a value in a text field, or clicked on a button. The event originates from an iTasks client, which is
usually a web browser. Another possibility is that the iTasks system has received an event from
another source. This source could be in the same iTasks server, or it could be another iTasks
server.

Task evaluation is done with an environment *IWorld. Uniqueness typing (*) is used to
ensure that the correct environment is passed around the system. Compile-time type errors are
generated when this is not the case. The *IWorld holds the internal state for the iTasks system.
The current time is kept here, amongst other things. *IWorld also contains the *World. This
world is what allow tasks to perform side effects, like reading from a file or creating a TCP
connection.

Task evaluation yields the following results:

• An optional Value, which can be stable or unstable as mentioned earlier.

• An optional change in the user interface for a user when the task has a user interface.

• A new version of the task state. This state will be stored in the system and used the next
time the task function is evaluated.

• An updated *IWorld

The next chapter gives a thorough overview of the share system in its current state.



Chapter 3

Shares in iTasks

The purpose of this chapter is to give a thorough overview of the current share system in iTasks.
This is necessary to understand the main contribution of this thesis. We first show how shares
are used in the iTasks framework. We then explain the different types of shares. We conclude
by giving some semantic properties of shares, as well as some implementation details.

Shares are an abstraction on data. A share is the single interface by which tasks can access
this data. It is helpful to think of a share as a set of functions used to manipulate data. A share
itself does not contain data, rather it is a set of functions to read from or write to the actual
data source.

An example of share usage is the withShared function. The function creates a share for use
in another task.

withShared :: b ((SDS () b b) -> Task a) -> Task a | iTask a & iTask b

sharedString = withShared "this string is shared"

\share.

viewSharedInformation "viewSharedInformation" [] share

-&&-

updateSharedInformation "updateSharedInformation" [] share

The sharedString function defines a task using withShared. The share variable is used
as a share by viewSharedInformation and updateSharedInformation. See Fig. 3.1 for the
user interface that is generated by this task definition. The share allows both parallel tasks to
communicate. In this case, they communicate a simple String. Note that any type satisfying the
iTask restriction could be used instead. The value of the share is initialised with "this string

is shared" . The updateSharedInformation task is allowed to modify the current share value,
while the viewSharedInformation task can only read the current value of the share.

In general, a share has type SDS p r w. The r and w type variables represent the read and
write type of the share, respectively. The read type is the type of value retrieved when reading
from the share. The write type is the type of value required when writing to the share. These
types do not necessarily correspond. The p type variable denotes the type of the parameter. A
share might need extra information in order to perform a read or write operation. We will touch
upon the exact function of this parameter later.

In the case of the sharedString example, the type of the created share is SDS () String

String.

9
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Figure 3.1: User interface generated for the sharedString task. The top half of the screen
shows the current value of the share. It is updated automatically when the value of the share
is changed. The bottom half of the screen allows the user to change the current value of the
share.

Communication between tasks is not the only feature of the share system. Another important
aspect is that it provides an abstraction layer on real data sources, like the file system or a server
on the internet. We first explain how shares may be used in tasks. Then, we explain how this
abstraction works. After that, we will show how shares can be composed.

3.1 Using shares

The iTasks system provides a number of function to interact with shares.

get :: (SDS () r w) -> Task r | iTask r

set :: w (SDS () r w) -> Task w | iTask w

upd :: (r -> w) (SDS () r w) -> Task w | iTask w & iTask r

watch :: (SDS () r w) -> Task r | iTask r

The get function retrieves the current r value of a share. The set function writes the given
w value to the share. The upd function applies a function to the value of a share. This allows
in-place updating of the share without having to get and set the value yourself. watch reads
the value from a share. It also registers to changes in the share. Registration involves that the
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iTasks system will re-evaluate a task whenever the value of the share changes. This is used to
provide automatically updating user interfaces, amongst other uses. Writing and updating a
share both trigger evaluation of all tasks that are currently watching the value of the share.

In addition to these operations, we also provide interaction primitives using shares that are
analogous to viewInformation and updateInformation.

viewSharedInformation :: String [ViewOption r] (SDS () r w)

-> Task r | iTask r

updateSharedInformation :: String [UpdateOption r w] (SDS () r w)

-> Task r | iTask r & iTask w

The viewSharedInformation function takes a share as an argument. It creates a task which
registers to the value of the given share. The corresponding user interface is updated automati-
cally when the value of the share is changed.

The updateSharedInformation also registers to the value of the given share. This function
is used when the user must also be able to edit the value of the share. The user interface is
automatically updated when the value of the share changes. Edits on the value made by the user
are immediately applied to the value of the share.

We have shown how shares can be used in iTasks. We will now dive deeper into the share
system, explaining how shares provide an abstraction on external data sources, the different
types of shares, and how shares can be composed to form new shares.

3.2 Interfacing with the world through shares

Tasks must be able to interface with the world outside iTasks. An example of this is a task which
reads data from a file. The share system provides the interface through which to interact with
the outside world. The specific share type that allows us to do this is SDSSource.

:: SDS p r w = SDSSource (SDSSource p r w)

| ...

:: SDSNotifyPred p :== TimeSpec p -> Bool

:: SDSSource p r w

= { name :: String

, read :: p *IWorld -> *(r, *IWorld)

, write :: p w *IWorld -> *(SDSNotifyPred p, *IWorld)

}

The SDSSource record contains two functions: read and write. The first function retrieves
a value of type r. This can for instance be used to read the contents of a file, or to retrieve
data from the internet by making an HTTP request. The second function writes a value of type
w. This corresponds to replacing the contents of a file with new contents, or sending a PUT or
POST message to an HTTP server.

The write function returns a notification predicate parametrised by the parameter of the
share. This predicate is used to determine which tasks need to be notified when the source share
is written to.

Note that both the read and write functions can result in errors.1.

1For brevity and clarity, we leave out the corresponding MaybeError type in this document. The type of the
read function is in reality read :: p *IWorld -> (MaybeError TaskException r, *IWorld)
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:: FileName :== String

// Read the contents of a file as String

readFile :: FileName *IWorld -> (String, *IWorld)

// Write the value to a file

writeFile :: FileName String *IWorld -> *IWorld

valueShare :: SDS FileName a a | toString, fromString a

valueShare = SDSSource { name = "valueShare"

, read = read

, write = write}

where

read filename iworld = appFst fromString (readFile filename iworld)

write filename w iworld

= (Ok (\otherFilename ts. filename == otherFilename),

writeFile filename (toString w) iworld)

The given example share supports reading a String from a file and interpreting it as a Clean
type using the fromString function. The inverse is true for the write function.

This share also shows how the parameter can be used. In this case, the parameter allows us
to control the filename that is used to store and retrieve the value. The valueShare definition
can now be used to store different objects of different types in different files, so that they do not
interfere. Defining a new share for each object is unnecessary.

Another possibility to provide the filename to the share is to change the function signature
to valueShare :: FileName -> SDS () a a | toString, fromString a. We will show later
why using the parameter is the preferred way.

We can use this share in a task in the following way, assuming the required toString and
fromString instances are available:

sdsFocus :: p (SDS p r w) -> SDS p` r w

integersShare = sdsFocus "integers.txt" valueShare

integersTask :: Task [Int]

integersTask = get integersShare

>>= \integers. viewInformation "Current value" [] stringValue

For now, it suffices to say that sdsFocus is a function that supplies a parameter value to a
share. We will look at the exact definition later in this chapter.

We have shown how the SDSSource share can be used to interact with the environment. One
might wonder what the advantage is of using a share. After all, it is possible to achieve the same
results in a task function because it also has access to the *IWorld.

The main advantage of shares is that they can be combined or composed. SDSSource is not
the only type of share. Other shares allow constructing a new share from one or more other
shares. For example, the integersShare from the previous example could be placed inside a
share which filters out all odd numbers. Combining shares using combinators allows for filtering
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data, zooming in on different parts of a data structure, or combining data sources into one.
This allows using the same share definition multiple times, reducing code duplication. Another
advantage is that registration to a share value is handled automatically, no matter the complexity
of the share definition. The programmer does not have to implement updating tasks themselves,
they can rely on the registration to provide automatic updating.

3.3 Combining shares

A share can be thought of as a tree. A leaf in the tree is a share which does not have any children
shares. It can interact directly with the environment if necessary. SDSSource is an example of
a leaf in a share tree. A node in the tree has one or more children. It uses these children to
retrieve their values and combine them in some way. SDSLens, SDSSelect, SDSParallel, and
SDSSequence are all nodes in a share tree. See Fig. 3.2 for a visual representation of a share tree.

Parallel

Select Source

Source Source

Figure 3.2: An example of a share tree. The top node is an SDSParallel share, which has an
SDSSelect share and an SDSSource share as children. The left SDSSelect has two SDSSource

shares as children.

3.3.1 SDSLens

The example share integersShare in the previous subsection can be used effectively to view
and update a list of numbers.

Shares can contain all kinds of data structures. It is often the case that we are only interested
in a part of the data structure provided by another share. In the case of a list of numbers, we
might only be interested in the number at a specific index. In the case of a record, we might
only be interested in a single field. The iTasks framework provides the SDSLens share which can
transform or zoom in on data provided by another share.

A parametrized lens (introduced in their current form in iTasks by Domoszlai et al. [5]) can
be used to transform the read or write type of a underlying share. For example, a lens can
transform a share of type SDS () [a] [a] to SDS Int a a, focussing only on a specific element
of the list. Another example of lens usage is to transform a share to be read only.
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Lens p r w SDS ps rs ws

Figure 3.3: An example of a SDSLens. The type of the lens is SDS p r w. The lens contains
functions to transform the read type of the underlying share (rs) into the read type of the lens
itself (r). It contains an analogous function from w to ws.

Fig. 3.3 shows a visual representation of a lens.

:: SDS p r w =

...

| E.ps rs ws: SDSLens (SDS ps rs ws) (SDSLens p r w ps rs ws) & iTask ps

...

:: SDSLens p r w ps rs ws =

{ param :: p -> ps

, read :: p rs -> r

, write :: p rs w -> (Maybe ws)

, notify :: pw rs w -> SDSNotifyPred pq

}

Reading from a lens reads the value from the underlying share and applies the read function,
transforming the rs value into the r value of the lens. Writing requires reading the value of the
underlying share, applying the write function to it, and optionally writing the new value to the
underlying share. Writing to the underlying share is optional. This is for example used to make
shares read-only.

A lens also defines a notify function. This function is used when writing to the underlying
share. Tasks registered to the value of the lens should only be notified when relevant data is
changed. In the example of building a lens to focus on a single element of a list, tasks registered
to the lens should only be notified whenever the value at the specific index is changed.

As an example, we define the following singleItem share. It is used to create a share of a
single item in a list.

(!?) :: [a] Int -> Maybe a

singleItem :: SDS () [a] [a] -> SDS Int a a

singleItem = sdsLens "singleItemLens" (const ()) read write notify

where

// Reading indexes into the list.

read i items = mb2error "List index out of range" (items !? i)

// Writing replaces the item at the index.

write i items item = mb2error "List index out of range" (items !? i)

// Notify only when the customer at the index is written to.

notify i items item = \ts ii. i == ii
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The !? operator retrieves an argument from a list at the specified index if the index is valid.
Note the type of the share: SDS Int Customer Customer. The parameter is the index of the

customer in the list. However, all share operation functions (get, set, etc.) require a share of
type SDS () r w. In other words, we must provide a value for the parameter. The previously
mentioned sdsFocus function is another example of a SDSLens. It transforms the parameter
type by providing a value for the existing parameter of a share.

sdsFocus :: p (SDS p r w) -> SDS p` r w | iTask p

This function fixes a specific value for the parameter and transforms the share into a share
where the parameter can be any type. It can be used in the following way:

viewItem :: Int -> Task a | fromString, toString a

viewItem id = viewSharedInformation "viewItem" [] (sdsFocus id singleItem)

Lens () a a Lens Int a a Source () [a] [a]

Figure 3.4: The visual structure of the lens used by the viewItem task.

See Fig. 3.4 for a visual representation of the structure of the lens used by viewItem.
Using this share, two tasks can work with different elements of data is a list without interfering

with one another. Task1 can safely update the list item at index 1 without causing task2 to receive
unnecessary update events. The share also shows why the parameter is useful: It allows us to
combine different shares, while still being able to configure them.

This example of retrieving a specific element in a list shows only a small portion of the
capabilities of a lens. It can also be used to apply a function to the underlying data structure or
to transform a share into a read-only share.

3.3.2 SDSSelect

A selecting share can choose between accessing one of the two underlying shares depending on
the parameter. We can view an SDSSelect as a disjunction, choosing between two different other
shares of the same read and write type. The definition of an SDSSelect share is as follows:

:: SDS p r w =

...

| E. p1 p2: SDSSelect (SDS p1 r w) (SDS p2 r w)

(SDSSelect p p1 p2 r w) & iTask p1 & iTask p2

:: SDSSelect p p1 p2 r w =

{ select :: p -> Either p1 p2

, notifyl :: p1 r w -> SDSNotifyPred p2

, notifyr :: p2 r w -> SDSNotifyPred p1

}
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Select p r w

SDS p1 r w SDS p2 r w

(a) Structure of an SDSSelect.

Parallel p r w

SDS p1 r1 w1 SDS p2 r2 w2

(b) Structure of an SDSParallel.

Figure 3.5

The select share uses its current parameter to create either a parameter value for the left
share, or a parameter value for the right share. Depending on its value it delegates all operations
to either one of the underlying shares. The two notify functions are used to determine whether
the select share should be notified when one of the underlying shares is written to.

3.3.3 SDSParallel

In order to combine data from multiple sources, a parallel share can be used. In contrast to
the SDSSelect, this share combines the result of two other shares. Where the select share is
a disjunction, this share combinator models a conjunction. See Fig. 3.5b for the structure of a
parallel share.

:: SDS p r w =

...

| E.p1 r1 w1 p2 r2 w2: SDSParallel (SDS p1 r1 w1) (SDS p2 r2 w2)

(SDSParallel p1 r1 w1 p2 r2 w2 p r w) & iTask p1 & iTask p2

:: SDSParallel p1 r1 w1 p2 r2 w2 p r w =

{ param :: p -> (p1, p2)

, read :: (r1, r2) -> r

, writel :: p r1 w -> Maybe w1

, writer :: p r2 w -> Maybe w2

}

Suppose there are two shares defined as follows:

listItemShareA :: SDS Int [a] [a]

listItemShareB :: SDS Int [b] [b]

The combinator >*<

(>*<) infixl :: (SDS p rx wx) (SDS p ry wy) -> SDS p (rx,ry) (wx,wy) | iTask p

is used to create a share of type
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combinedItems :: SDS Int ([a], [b]) ([a], [b])

combinedItems = listItemShareA >*< listItemShareB

The sdsFocus can still be used to select a specific index in the combined list of items.
Notification is handled automatically: When either of the two underlying shares is written to,
tasks registered to the value of the parallel share are notified.

3.3.4 SDSSequence

SDSSequence allows expressing dependencies between two shares. For instance, reading from
one share may require reading from another. SDSSequence uses the value of the left share as
parameter for reading and writing to the right share.

Sequence p r w

SDS p1 r1 w1 SDS p2 r2 w2

Figure 3.6: Structure of a SDSSequence.

:: SDS p r w =

...

| E.p1 r1 w1 p2 r2 w2: SDSSequence (SDS p1 r1 w1) (SDS p2 r2 w2)

(SDSSequence p1 r1 w1 p2 r2 w2 p r w) & iTask p1 & iTask p2

:: SDSSequence p1 r1 w1 p2 r2 w2 p r w =

{ paraml :: p -> p1

, paramr :: p r1 -> p2

, read :: p r1 -> Either r ((r1, r2) -> r)

, writel :: p r1 w -> Maybe w1

, writer :: p r2 w -> Maybe w2

}

The options contain a paraml :: p -> p1 function, which transform the parameter for the
sequence share to the parameter for the left share. This is then used to read a value from the left
share. We then use the resulting value and the read function from SDSSequence to determine
whether we still need to read from the right share. If we do, we use the paramr function to
calculate the parameter for the right share and use the normal read function.

In practice, a sequence share is often used to store some kind of configuration. In the case
of a share which communicates with a database, the left share of a sequence could contain
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the database configuration parameters. Using a sequence share simplifies building shares upon
the share database connection share, as we would otherwise need to focus the configuration
parameters manually. This also allows for dynamic change of those parameters. For example,
writing to this share could choose between using an internal in-memory database or an external
database.

3.4 Semantics

The share system adheres to a number of properties that ease reasoning about it.

• Shares are completely opaque. A user of a share does not need to know how a share is
defined or how it functions internally. This implies that a programmer can always safely
use the built-in functions to work with shares without worrying about interactions between
different types of shares or certain forbidden combinations.

• Reading and writing from a share is done atomically. It is guaranteed that while a task
is being evaluated and it interacts with a share, no other task can change the value of
the share during the operation. Consequently, there can be no race conditions when using
shares.

• Shares are always updated atomically. While reading and writing from a share through
get and set are separate steps, and could be interleaved by another task performing some
share actions, updating is a single action.

These properties follow from the fact that tasks are evaluated in a blocking way. Only one
task is being evaluated at any time, which in turn guarantees that only one share operation can
be performed at once.

3.5 Distributed Shares

In a distributed setting, with multiple iTasks servers, these guarantees still hold. When per-
forming a share operation on another instance, it is still guaranteed that the operation is done
atomically on that machine. Care should be taken that the upd function is used as much as
possible. On a single machine, first get-ing and then immediately set-ing is atomic because
task evaluation is done synchronously. On multiple machines, this is no longer the case. Sending
a get message and afterwords sending a set may be interleaved by operations of other iTasks
instances. upd is still always performed atomically because it is a single action.

3.6 Implementation

It is useful to highlight a few implementation details which will be referred to in the coming two
chapters.

3.6.1 Internal share functions

We have shown the four high-level operations on shares. These functions rely on more low-level
functions to perform the required operations. The main contribution of this thesis will involve
these low-level functions, so we show their definitions here.
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read :: (SDS () r w) *IWorld

-> *(MaybeError TaskException r, *IWorld)

write :: (SDS () r w) w *IWorld

-> *(MaybeError TaskException (), *IWorld)

modify :: (SDS () r w) (r -> w) *IWorld

-> *(MaybeError TaskException (), *IWorld)

register :: (SDS () r w) TaskId *IWorld

-> *(MaybeError TaskException r, *IWorld)

Note that the read and write functions should not be confused with the read and write

fields in specific SDS records.
The read function takes SDS () r w as argument. The read function uses the definition of

the share to perform the required read operations. Reading yields a value of type r.
The write function takes SDS () r w as argument. It also takes a value of type w. It uses

the definition of the given share to write the value to the share.
The modify function takes SDS () r w as argument. It also takes a function of type r -> w.

It uses the read function to read the value of type r from the share. If reading was successful,
it applies the modification function to the r value which yields a value of type w. The final step
is to write this value to the share using the write function.

3.6.2 Registration

The register function has almost the same signature as read. The difference is that registration
requires a TaskId. Registering to a share returns the read value of that share.

Registration to a share is achieved by storing a collection of notify requests in the environment.
A notify connects a task to a share identity, denoting that the task is watching the share. A task
can be dependent on multiple shares. For instance, when a task uses a value from a SDSLens,
the task is not only dependent on the lens but also on the underlying share. After all, another
task could use the underlying share without using the same lens. See Fig. 3.7 for an example.

Task1 Task2

Lens

Share

Figure 3.7: Task1 uses the lens to retrieve a value. Task2 uses the underlying share directly
to retrieve a value. Task1 should only be notified of changes relevant to it, taking into account
the lens definition. Task2 should be notified of all changes to share, even when the lens is
written to.

When a task registers to the value of a share, the register implementation adds a notification
request to the environment for all shares in the share tree. Whenever one of those shares is
written to, the environment is checked for matching notification requests. These requests are
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filtered to account for the specific share configuration, like different values for a parameter. The
write operation returns a set of notify requests. For each request, a refresh event is queued for
the respective task.

In order to efficiently keep track of registrations for each share, each share needs to be
identifiable. This identify is a String and there is an internal function sdsIdentity :: (SDS

p r w) -> String to do this.

3.7 Summary

We have shown that the share system provides a powerful abstraction for communication between
tasks and working with external data sources. Shares can be combined using one of the provided
share types. This simplifies development of an iTasks application and prevents code duplication.
The next chapter shows a new modification to the share system that allows expressing the
capabilities of a share, instead of the structure.



Chapter 4

Shares as Classes

This chapter explains an modification of the share system which allows us to express a share
in terms of its capabilities. This is necessary to be more strict about which type of share will
be accepted by the different share-manipulating functions in iTasks. The next chapter will use
shares in the way explained by this chapter.

4.1 Motivation

Shares are implemented as an Algebraic DataType (ADT). The definition looks as follows, along
with some useful type aliases:

:: SDS p r w = SDSSource ...

| SDSLens ...

...

:: Shared r :== SDS () r r

:: ROShared r :== SDS () r ()

Modulo a few type synonyms which make it easier to work with shares (Shared, ROShared),
constructors of SDS p r w are the only constructors on which share operations can be done.
These constructors do not convey much information about the share. For example, expressing
that a share is read-only is done by fixing the write type w to be () using the toReadOnly

function. Writing can then still be done, but nothing is actually written to the share and no
other tasks are notified of the write action.

We implemented an improvement that allows expressing what can be done with a share. This
improvement has the following advantages:

• Separating the different actions that can be performed with a share allows us to create
shares with partial capabilities such as a read only share. This allows for more fine-grained
control on shares.

• Following from the previous point: The compiler can give errors when a specific action is
not possible for a share. Writing to a read-only share was a no-op in the previous system.
With this extension, writing to a read-only share results in a compile-time error.

21
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• The extension allows to express certain share combinations in an explicit way. For example,
only a SDSSource may be cached using an SDSCache1. This extension allows expressing
such restrictions and gives compile-time errors when they are not satisfied.

• Extending the share system with new types of shares is easier. The logic of a new share
implementation is not tied to iTasks, but rather to the application which defines and uses
the new share type.

4.2 Shares as type classes

We distinguish several different behaviours which can be performed with shares:

Identify We can transform a share into its identity.

Read We can read a value from a share.

Write We can write a value to a share.

Modify We can apply a function to a share and retrieve the resulting value, also writing this
value to the share.

Register We can read the value of a share and register to future changes.

Registration requires that we can identify a share in some way. We do this by generating a
share identity. This identity uniquely identifies the share configuration. The identify includes
the current parameter p for the share. Reading also requires the ability to identify the share.

Reading from a share and registering to a share are closely related. The only difference is that
registering involves storing registration requests into the environment. Because of this, reading
and registering are implemented by the same function. This function takes an argument which
denotes whether to read or to register. Note that we still separate reading and registering to a
share. This enables us to create a share which can be read, but which cannot be registered to.

Writing to a share requires identification as well. After writing to a share, we use the current
parameter and the identity of the share to retrieve matching registration requests from the
environment.

Modifying a share is implemented as first reading from the share, applying the modification
function, and then writing to the share. Modifying a share thus requires the ability to read and
write.

We can express this as a graph in Fig. 4.1a. In Fig. 4.1b we show what the graph would look
like if reading and registering were implemented independently.

The class which expresses that a share can be identified provides a single function. It takes
a share and produces a list of strings using an accumulator.

class Identifiable sds

where

nameSDS :: (sds p r w) [String] -> [String]

We can only read from a share if we can also identify it. The Readable definition therefore
contains a restriction that sds should also be a member of the Identifiable class for it to be
a member of the Readable class. Note again that we leave out the MaybeError types.

1The previous chapter has not mentioned this share type, as the only purpose is to improve performance.
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Identify

Read Write

ModifyRegister

(a) Dependency diagram between the different
share operations as implemented in iTasks.

Identify

Read Write

Modify

Register

(b) Theoretical dependency diagram.

Figure 4.1

class Readable sds | Identifiable sds

where

readSDS :: (sds p r w) p (Maybe TaskId) String *IWorld

-> *(r, *IWorld)

The readSDS function takes a share, a parameter, a possible task identifier and a share
identity as parameter. The task identifier is used for registration purposes. The share identity
is used to track the original share which has triggered the read operation.

In the same manner we define when a share is Writable. Remember that we need to be
able to identify the share in order to find matching registration requests. This gives rise to the
Identifiable sds restriction.

class Writeable sds | Identifiable sds

where

writeSDS :: (sds p r w) p w *IWorld -> *((), *IWorld)

Registering to the value of a share only requires that it is Readable. We also get the restriction
that it should be identifiable from the definition of Readable.

class Registrable sds | Readable sds

where

readRegisterSDS :: (sds p r w) p TaskId *IWorld -> *(r, *IWorld)

Lastly, modifying a share requires that it is both Readable and writeable:

class Modifiable sds | Readable, Writeable sds

where

modifySDS :: (r -> w) (sds p r w) p *IWorld -> *(w, *IWorld)

We also define a little helper class which allows us to shorten writing the restrictions on sds

in the most common cases:
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class RWShared sds | Modifiable, Registrable sds

With these classes we can define separate ADT’s for each of the types of shares. We could
define shares as record types directly. However, we will see that the next chapter makes use of
these ADT’s.

For example, SDSSource is now defined in the following way, where we leave out the actual
implementation of the instances:

:: SDSSource p r w = SDSSource (SDSSourceOptions p r w)

:: SDSSourceOptions p r w =

{ name :: String

, read :: p *IWorld -> (r, *IWorld)

, write :: p w *IWorld -> (SDSNotifyPred p, *IWorld)

}

instance Identifiable SDSSource

instance Readable SDSSource

instance Registrable SDSSource

instance Writeable SDSSource

instance Modifiable SDSSource

The readSDS instance does not replace the read function in the iTasks internals. The read

function uses the readSDS implementation for the given share. readSDS is then used recursively
on the children of the share.

4.3 Usage

Using type classes to represent shares has the effect that the API for iTasks functions like
updateSharedInformation or get changes slightly. Where we would first require instances of
the SDS ADT to be supplied to the functions, we now require that any type suffices as long as
the appropriate classes are implemented for it.

// Before

updateSharedInformation :: String [UpdateOption r w] (SDS () r w)

-> Task r | iTask r

// After

updateSharedInformation :: String [UpdateOption r w] (sds () r w)

-> Task r | iTask r & RWShared sds

// Before

get :: (SDS () a w) -> Task a | iTask a

// After

get :: (sds () a w) -> Task a | iTask a & Readable sds

A consequence of using classes is that whenever a function returns a share, we need to specify
the exact type of the returned share. The mapRead function, which transforms only the read
value for a share using a lens, illustrates this:
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// Before

mapRead :: (r -> r`) (RWShared p r w) -> RWShared p r` w

// After

mapRead :: (r -> r`) (sds p r w) -> SDSLens p r` w | RWShared sds

It is only necessary to explicitly specify the type when exporting the share definition from a
definition module.

4.4 Limitations

There are several remarks to be made on this change:

• It is no longer possible to write type aliases in the same way for the most common share
usages. First, we could write Shared r to abbreviate RWShared () r r. The fact that we
need to refer to the type of the share from the list of context restrictions means we can
no longer abbreviate shares like this. We can, however, still create some simple aliases for
each of the share instances when we includes the sds type variable in the alias:

:: Shared sds a :== sds () a a

:: SimpleSDSLens a :== SDSLens () a a

Note that we still need to write the correct restrictions on the sds type parameter.

• Due to the internals of the iTasks engine we have to be overly restrictive in some cases.
Take for instance viewSharedInformation:

viewSharedInformation :: (sds () r w) String [UpdateOption r w]

-> Task r | iTask r & RWShared sds

The type sds is restricted to belong to the RWShared class, while intuitively we only need to
be able to register to the value of the share. The cause of this is that updateSharedInformation
and viewSharedInformation share large parts of their implementation under the hood, so
we need to restrict sds so that it satisfies the restrictions on both functions.

4.5 Possible improvements

Take a look at the definition of SDSLens:

:: SDSLens p r w = E. ps rs ws sds: SDSLens (sds ps rs ws)

(SDSLensOptions p r w ps rs ws) & RWShared sds

The context restriction on sds is RWShared, a very strong condition. The SDSLens constructor
requires that we pass in a share which is an instance of RWShared.

It should be possible to create a lens on a Readable share, which should yield a Readable lens.
We have tried to explore solutions to this problem, but have not found one which is satisfactory.
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One possible solution is to model the types of underlying shares explicitly. We add another
type parameter to a share:

:: SDSLens sds p r w = E. ps rs ws: SDSLens (sds ps rs ws)

(SDSLensOptions p r w ps rs ws) & ...

We could then change the instance of Readable for SDSLens.

instance Readable (SDSLens sds) | Readable sds

This allows us to express that a lens is readable only when the underlying share is readable
as well. A similar approach can be used for all other share types and share actions.

The major downside of this approach is that we need to explicitly specify the full type of a
lens, including the types of all underlying shares when exporting shares in a definition module.
In iTasks, it is often the case that shares are deeply nested. Specifying the full type would be
very cumbersome. This addition would not improve the user experience for programmers using
the share system. We have therefore chosen not to implement this.



Chapter 5

Asynchronous shares

As seen in Chapter 3, shares allow tasks in the iTasks system to communicate and share data.
Operations on shares are safe, in the sense that they are atomic. This property is due to the
sequential nature of task evaluation by the system. When multiple tasks need to be evaluated,
they are done so one after another. Every task evaluation is performed until there is a new
version of the task. The atomic properties of shares are for free. An important effect of these
properties is that race conditions do not exist.

However, this way of evaluating shares poses a problem. Suppose a programmer creates a
new SDSSource share which initiates a connection to a database on the other side of the world.
Chances are that sending queries and retrieving results are quite slow. This could be due to
network performance, database performance, or other factors. The sequential task evaluation
mentioned earlier causes evaluation of all other tasks to be postponed until one task retrieves a
result from the database share. This is highly undesirable: All other tasks in the system cannot
be re-evaluated until the time-consuming share has evaluated to a value, even the tasks which
have no relation to the database share. This has the effect of a seemingly unresponsive iTasks
application. Another result of this is that the share cannot keep a connection open between
different evaluations, slowing down the evaluations.

A solution to this problem is some way to wait for a result without blocking other tasks in
the system. To this end, we will define asynchronous shares and an asynchronous share system,
allowing non-blocking actions. This system can be used to communicate with an external service,
like a database or a HTTP service.

Before we can dive into the asynchronous share system, we first explain some prerequisites.
We give some definitions that will be used in this chapter. We continue by identifying the
requirements on an asynchronous share system. We look at other solutions to asynchronous
programming in other languages and frameworks. Based on these findings, we present our
solutions and motivate the choices made. After that, we explain all the ins and outs of an
asynchronous share system. We show how the new system is used through multiple examples.
We conclude by giving the results.

5.1 Definitions

Shares cannot be evaluated by themselves. They are always evaluated in the context of an action
like reading, writing, or modifying. However, int this chapter it makes more sense to refer to
these actions as share evaluation.

27
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An asynchronous share is a share that may require waiting. Most often we are waiting
for a network response. However, an asynchronous share does not necessarily need to involve
communicating over a TCP connection. It could also involve reading a very large file, which is
done in chunks of a certain size so that we do not block other tasks in the system. However, due to
iTasks’ dependency on TCP connections to generate events, we will only consider asynchronous
shares which use the network. At the end of this chapter, we propose an unimplemented solution
to this problem.

An asynchronous job is a TCP connection which has sent a message and is awaiting a response.
This waiting is done in a non-blocking way. For example, on a POSIX system this is achieved
using the select() system call.

5.2 Asynchronous Functional Programming

Programming language designers can approach asynchronous computing in many different ways.
We highlight a couple of these ways in order to motivate our solution.

Functional Reactive Programming (FRP) is a programming paradigm that focusses around
streams of events, and how these streams change. A stream is a sequence of values. A reactive
application defines computations in terms of those streams. When the stream receives a new
value, all computations which use the stream are re-evaluated. FRP is often used to build
interactive applications which respond to change automatically, without manual updating of
state or UI components.

Elm [2] is an implementation language for Event-driven FRP [20]. Elm can be compiled to
JavaScript and is used to define responsive GUI applications in a web browser. In Elm, an event
could be some interaction by the user (a button is clicked, an value in a text field is updated),
or an event generated by a different source like a timer. Elm calls these events signals. Signals
can be combined into new signals. GUIs can be defined using current signal values. These GUIs
are automatically updated when the value for a signal is changed.

The way by which Elm achieves asynchronous computations is the async keyword. The
evaluation of a signal can be made asynchronous in this way. This supports defining arbitrary
asynchronous computations in conjunction with the ability to define multiple signals. This is the
recommended way to perform HTTP requests.

Reynders et al. [17] propose Multi-tier Functional Reactive Programming, a way to use
the same programming language to program servers and clients. The approach can be used
effectively to create web applications in a single programming language, where asynchronous
communication is handled automatically.

Haskell has multiple ways to do asynchronous programming, which are summarised in a tu-
torial by Simon Marlow [7]. It it possible to fork the evaluation of a expression. This spawns a
new Haskell thread that is cheaper than an operating system thread. Communication between
these threads is achieved through the MVar abstraction. This is a mutable data structure al-
lowing multiple Haskell threads to safely communicate values. Haskell also provides Software
Transactional Memory, a technique that enables a programmer to group operations atomically.
This allows efficient communication and data sharing between threads, without having to build
complicated locking mechanisms.

JoCaml by Fournet et al. [6] uses message channels and separate processes (threads) to
perform asynchronous operations. There are two possibilities to communicate between processes:
Though mutable data structures, or through a synchronous First-in First-out (FIFO) queue.
The combination of these channels allows for declarative-style asynchronous programming. The
authors give multiple examples how functions or expressions can be evaluated asynchronously.
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See Syme et al. [18] for the asynchronous programming model used in F#. Dolan [4] et al.
provide an extension to Multicore OCaml called effect handlers, allowing interaction between
operating system threads and the OCaml runtime system.

5.3 Asynchronous iTasks

All solutions mentioned in the previous section rely on threads to work. An asynchronous
operation can be performed in roughly two ways. The first way is to start a typed thread
and wait for the result, after which the main thread can use the result to resume execution.
The second way is to provide a thread with a callback to be executed when the asynchronous
computation yields a result.

Clean does not have sufficient support for using threads in asynchronous work. However,
we can start external processes and communicate with them. Starting an external process is
expensive. Communication overhead with the process is also high. Therefore, these processes
are not a good candidate for asynchronous share evaluation.

Another option is to extend Clean with a notion of threads. This would require major work
in the language. One of the challenges would be the uniqueness typing. Additionally, the term-
rewriting semantics of Clean might be changed with the addition of threads. On top of this work,
iTasks would need to be rewritten to be able to deal with threads. A possible implementation
would involve spawning a new thread for every top-level task. The challenge would then be
to provide a way for tasks to communicate with one another safely. Clean is strictly a pure
language, which means that are no mutable data structures. Mutable data structures would also
need to be implemented to facilitate communication between different tasks.

We conclude that the best way to implement asynchronous shares is inside the existing
infrastructure. We will not use threads, external processes, or mutable data structures. Because
task evaluation is synchronous and done is a specific unique context, we cannot make use of
callbacks or CPS-style continuations when evaluating a share. Rewriting the whole iTasks engine
to be able to deal with threads or callbacks is too much work for the scope of this document.

5.4 Technical Challenges

There are certain challenges to consider when trying to design an asynchronous share system in
the existing iTasks framework.

First, we need a solution that fits inside the current iTasks system. In terms of code, but
also in terms of design and computation model. The solution needs to integrate well into the
existing way tasks are evaluated. This yields the following considerations when designing an
asynchronous share system:

• iTasks has been developed with the idea that task evaluation is quick. Consequently,
share evaluation is also assumed to be quick. We must take care that asynchronous share
evaluation is still quick.

• Tasks are evaluated even when no event has been received for that specific task. This is
often the case when using a parallel combinator like -&&-. A refresh event for one of the
tasks in the parallel combinator triggers re-evaluation of all tasks in the combinator. Shares
must be able to be re-evaluated, even when no change has occurred which is relevant for
that share.
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The second challenge is that we need to keep intermediate state between different evaluations
of the same asynchronous share. For instance, if a asynchronous share initiates a TCP connection,
we need to remember this connection and be able to refer to it later, when data is received on the
connection. If an asynchronous share reads from a file, we might want to remember the current
cursor and the data that has been read so far.

The third challenge involves an important feature of the share system: The ability to combine
shares using functions or combinators. We must be able to use an asynchronous share in all places
where a share can be used currently. It must be possible to place a lens on an asynchronous
share, to use it in a parallel combinator like >*<, or to select between two different asynchronous
shares.

These challenges are technical in nature. Programmers using the iTasks framework should not
have to consider the solutions to these technical challenges. We also present a set of requirements
from the perspective of an iTasks programmer.

5.5 Requirements

Table Table 5.1 gives an overview of the requirements.
The most important requirement concerns the essence of asynchronous shares: Evaluation of

asynchronous shares should not lead to waiting for a result in a blocking way.
Implementation of asynchronous shares should not affect existing programs. We want to

make it as easy as possible to work with shares. We therefore require that an asynchronous im-
plementation has no effect on the semantics of existing programs which do not use asynchronous
shares. Consequently, programmers should not have to change their programs to keep the same
behaviour.1

It is likely that certain actions take a varying amount of time. For example, an external
service may be unreliable. Sometimes it replies within a second, sometimes it does not reply
at all. A time-out mechanism should ensure that programmers can deal with unreliable data
sources, yielding an error when an asynchronous action takes too long.

5.6 Share Rewriting

Aforementioned requirements and technical challenges lead us to design a system that can evalu-
ate a share and remember the evaluation state when asynchronous actions are performed, without
any changes to existing task-level share function like get or watch. We also require as few global
state as possible, so that different evaluations of the same share can never interfere.

We introduce share rewriting. This design entails that evaluating a share may yield a result
directly, or yields a new version of the share. If a new share is returned, it means that the share
could not be evaluated in a single operation: There are asynchronous components in the share
tree. This is done recursively. Evaluating the child of a node in the share tree may also result in
a new version of the share, signalling that some asynchronous process is started to retrieve the
value.

This solution fits nicely into the existing framework. Shares can be evaluated multiple times
and the signatures of the get and watch functions does not have to change.

The high level idea of share rewriting is the following:

1. A task calls either the read, write, register, or modify functions with a share as argument.

1This does not consider the extension mentioned in Chapter Chapter 4, which requires changes to type signa-
tures.
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Category Name Description
Usability US I should not have to consider whether a share is asyn-

chronous. The built-in functions which I use to build or
use shares must not require me to consider whether a share
is asynchronous.

Semantics SEM I should not have to adapt my existing iTasks programs
to ensure they keep working.

Error handling Evaluating a share can result in errors:
ERR1 An error in evaluating an asynchronous share must be

propagated to the task relating to the share.
ERR2 An error in evaluating an asynchronous share must not

affect the evaluation of other shares or tasks.
Time-out TIME I can configure time-outs and try-again options to ensure

that I can make effective use of external services which
may be slow or which may sporadically not respond.

Non-blocking BLOCK I can do any share operation without worrying about
blocking other users, or making the system hang. I do
not need to consider how other users might use shares.

Table 5.1: Requirements on an asynchronous share system from the perspective of an iTasks
programmer.

2. Upon reaching an asynchronous share in the tree, initiate a connection to retrieve the
value and rewrite the asynchronous node to keep track of the connection id. Return the
new version of the asynchronous share.

3. When other shares retrieve an asynchronous share from one of their children, that share
cannot be directly evaluated to a value and must also return an asynchronous result.

4. The task evaluating the share retrieves either a direct result, or a rewritten share. When
it receives a rewritten share, it needs to store this share and await further refresh events
related to asynchronous operations for this share.

5. When the connection receives a response, re-evaluate the task corresponding to the con-
nection. The task re-evaluates the rewritten version of the share. The asynchronous node
checks for a result in the environment using the stored connection id.

6. If a result is found, rewrite the node to incorporate the value into the tree and return the
result. The result value can now be used higher up in the tree by parent shares to construct
further results. We store the value in the tree so that the share may be evaluated multiple
times without repeatedly performing asynchronous actions.

A task needs to store intermediate results from evaluating a share. This share may have
initiated any number of connections. Each of these connections has to be able to send refresh
events to the corresponding task. We need some way to associate a connection with a task. To
this end, we define a context in which share evaluation is done.

5.7 Share Context

Evaluating a share can be done in different contexts. A possible context is a task: A programmer
uses for instance viewSharedInformation to view the value of a share. Another possible context
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is when a share is evaluated by the iTasks system itself. The internals of the iTasks engine use
shares extensively. It relies on the fact that shares are evaluated synchronously. It has never
been developed with asynchronous shares in mind. Changing the internal administration of the
iTasks system would be a major rewrite outside the scope of this document.

We therefore choose to model this context explicitly, so that system shares cannot be evaluated
asynchronously. Asynchronous evaluation may only be done in the context of a task. The iTasks
engine can still rely on synchronous evaluation of its internal shares.

We introduce a type TaskContext:

:: TaskContext = SystemContext

| TaskContext TaskId

We adapt the existing share functions so that they can take the context into account:

read :: (sds () r w) TaskContext *IWorld

-> *(r, *IWorld) | Readable sds

readRegister :: (sds () r w) TaskId TaskContext *IWorld

-> *(r, *IWorld) | Registrable sds

write :: (sds () r w) w TaskContext *IWorld

-> *((), *IWorld) | Writeable sds

modify :: (r -> w) (sds () r w) TaskContext *IWorld

-> *(w, *IWorld) | Modifiable sds

We also adapt the classes introduced in the previous chapter:

class Readable sds | Identifiable sds

where

readSDS :: (sds p r w) p TaskContext (Maybe TaskId) SDSIdentity *IWorld

-> *(r, *IWorld)

class Writeable sds | Identifiable sds

where

writeSDS :: (sds p r w) p TaskContext w *IWorld

-> *(Set TaskId, *IWorld)

class Registrable sds | Readable sds

where

readRegisterSDS :: (sds p r w) p TaskContext TaskId *IWorld

-> *(r, *IWorld)

class Modifiable sds | Readable, Writeable sds

where

modifySDS :: (r -> w) (sds p r w) p TaskContext *IWorld

-> *(w, *IWorld)

5.8 Asynchronous Results

Internal share functions (read, write, etc.) have to be adapted to deal with returning a new,
rewritten version of a share when a share has asynchronous components. For each of the opera-
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tions, we introduce a result type. This type contains either a result directly, or a new version of
the share.

:: ReadResult p r w =

E. sds: ReadResult r (sds p r w) & RWShared sds

| E. sds: AsyncRead (sds p r w) & RWShared sds

:: WriteResult p r w =

E. sds: WriteResult (Set TaskId) (sds p r w) & RWShared sds

| E. sds: AsyncWrite (sds p r w) & RWShared sds

:: ModifyResult p r w =

E.sds: ModifyResult (Set TaskId) r w (sds p r w) & RWShared sds

| E. sds: AsyncModify (sds p r w) & RWShared sds

Each of the share operations has an associated result type. The Result constructors denote
that a result is available directly, or that a previously asynchronous operation has yielded a
result. The Async constructors denote that an asynchronous job has been started.

Note that the Result constructors also return a rewritten share. This is necessary because
evaluating a subtree may have made changes within that tree, which we need in the future to
evaluate the whole tree. For example, a parallel share with two asynchronous children may yield
a ReadResult for the left child, while the right child still yields an AsyncRead. The left child
share has yielded a value after performing an asynchronous operation. This means that that
share has been rewritten to incorporate the value in the tree. By returning the rewritten share
as well as the value, we ensure that the value can be used in the future by subsequent evaluations
of the parallel share.

The read function and Readable class have to be adapted to return these asynchronous
results. The changes for the other share operations are similar.

read :: (sds () r w) TaskContext *IWorld

-> *(ReadResult () r w, *IWorld) | Readable sds

class Readable sds | Identifiable sds

where

readSDS :: (sds p r w) p TaskContext (Maybe TaskId) SDSIdentity *IWorld

-> *(ReadResult p r w, *IWorld)

5.9 SDSService: Communicating with the Internet

We have seen how the existing infrastructure has been adapted to deal with asynchronous shares.
We now introduce one such asynchronous share: SDSRemoteService.

:: SDSRemoteService p r w

= SDSRemoteService (Maybe ConnectionId) (WebServiceShareOptions p r w)

:: WebServiceShareOptions p r w

= HTTPShareOptions (HTTPHandlers p r w)

| TCPShareOptions (TCPHandlers p r w)
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:: HTTPHandlers p r w =

{ host :: String

, port :: Int

, createRequest :: p -> HTTPRequest

, fromResponse :: HTTPResponse p -> r

, writeHandlers :: Maybe (

p w -> HTTPRequest,

p HTTPResponse -> MaybeErrorString (SDSNotifyPred p)

)

}

:: TCPHandlers p r w =

{ host :: String

, port :: Int

, createMessage :: p -> String

, fromTextResponse :: String p Bool -> (Maybe r, Maybe String)

, writeMessageHandlers :: Maybe (

p w -> String,

p String -> MaybeErrorString (Maybe (SDSNotifyPred p))

)

}

A service share is a share which communicates with the internet in order to perform opera-
tions. For reading, it uses the current parameter value to create a message. This message can
either be a TCP message, or a HTTP request. The share definition also contains methods which
transform the response (a String in the case of TCP, a HTTPResponse otherwise) into a usable
Clean value of the correct r type.

Writing is performed in much the same way, with the exception that write support is optional.
Writing in the case of TCP consists of sending a message and receiving some kind of acknowl-
edgement that the message has been accepted. Writing in the case of HTTP consists of sending
a POST or PUT request. Not all services on the internet support these kinds of operations, so
we allow the programmer to express that they are not possible. When writeHandlers are not
present, writing to a service share is a no-op.

Registration is not supported in the case of a HTTP service. It is supported when defining
a TCP share. We cannot make use of the normal registration mechanism in iTasks. However,
some TCP services support keeping a connection open until a change is made in the service.
When the change is made, they use the open connection to notify the subscriber of the change.
An example is a database: One could subscribe to changes in a specified table. The database
would then notify when the table is modified, allowing the subscriber to retrieve the necessary
data.

We take a closer look at the fromTextResponse function in TCPHandlers:

fromTextResponse :: String p Bool -> (Maybe r, Maybe String)

It takes as arguments the received message, the current parameter, and whether we need to
register to the value. When the message can be parsed correctly, we return Just r. It could
be the case that the message has been split up in multiple parts. When not all parts have been
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received yet, we return Nothing to denote that the message is not yet complete. The second
element of the returned tuple is used to optionally reply with a registration message.

This service share can be used anywhere in a share tree. This allows transforming data in
the same way as you would normally do, like using lenses to zoom in on relevant parts. We now
show an example how such a share can be used.

5.10 Example: Retrieving Weather Information

We now have all components required to construct a simple example of share usage. The general
approach to defining a new asynchronous service share is the following:

1. We model the data using Clean types

2. We then specify whether the service uses TCP or HTTP and provide appropriate handlers,
so that we may send messages and parse the response.

3. We create a share using the provided remoteService function

We use Open Weather Map2 to illustrate this. This service allows us to retrieve the weather for
a city using HTTP requests. It responds using JSON with weather information like temperature
and humidity. It does not support updating weather requests, so writing is not supported.

We first model the response by Open Weather Map:

:: OpenWeatherResponse =

{ main :: OpenWeatherResponseMain

, weather :: [OpenWeatherResponseWeather]

}

:: OpenWeatherResponseWeather =

{ id :: Int

, main :: String

, description :: String

, icon :: String

}

:: OpenWeatherResponseMain =

{ temp :: Real

, pressure :: Int

, humidity :: Int

, temp_min :: Real

, temp_max :: Real

}

OpenWeatherResponse maps directly onto the JSON returned by performing a GET request
to Open Weather Map. We can now specify how the request should be sent and how the response
should be parsed:

2https://openweathermap.org/

https://openweathermap.org/
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:: ApiKey :== String

:: Query :== String

createRequest :: (ApiKey, Query) -> HTTPRequest

createRequest (apiKey, city)

= {HTTPRequest|newHTTPRequest

& server_name = "api.openweathermap.org"

, req_path = "/data/2.5/weather"

, req_query = "?q=" +++ city +++ "&APPID=" +++ apiKey

}

parseResponse :: HTTPResponse (ApiKey, Query)

-> MaybeErrorString OpenWeatherResponse

parseResponse {rsp_code, rsp_reason, rsp_data} _

| rsp_code < 200 || rsp_code >= 300

= Error (toString rsp_code +++ ": " +++ rsp_reason)

= case fromJSON (fromString rsp_data) of

Nothing = Error "Could not transform JSON"

(Just v) = Ok v

Finally, we define the share by creating a WebServiceShareOptions value with the appropri-
ate HTTP handlers. We do not provide writeHandlers, because doing a POST request is not
supported by Open Weather Map.

weatherOptions :: WebServiceShareOptions (ApiKey, Query)

(MaybeErrorString OpenWeatherResponse) ()

weatherOptions = HTTPShareOptions handlers

where

handlers = {HTTPHandlers| createRequest = createRequest

, fromResponse = parseResponse

, writeHandlers = Nothing

, host = "api.openweathermap.org"

, port = 80}

weather = remoteService weatherOptions

The resulting weather can be used to retrieve the weather for different cities. The parameter
is used to select different cities.

An example of using the share:

serviceTask :: Task ()

serviceTask = enterInformation "Enter city" []

>>= \city. get (sdsFocus ("APIKEY" , city) weather)

>>= \result. viewInformation result

>>= \_. return ()

The above example illustrates that 1. We can define an asynchronous share that communicates
over HTTP 2. The share can be used anywhere inside a share tree. This is illustrated by focussing
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a parameter using sdsFocus. 3. The external API for get has not changed. 4. The programmer
using the share when defining a task does not consider whether the share is asynchronous.

5.11 Asynchronous Share trees

See Fig. 5.1 for a share tree that contains asynchronous components. We use colours or patterns
to denote the different states a asynchronous share can be in.

Parallel

Parallel
Async queued

Async
Async done

Figure 5.1: An example of a share tree with an asynchronous component. A green (horizontal
grid) node denotes that the node is asynchronous and has already completed an operation. A
red (diagonal line pattern) node denotes that it is asynchronous still in the initial state. A
yellow (diagonal grid pattern) node denotes that the node is asynchronous and that some work
has been queued to calculate a value.

5.12 Share Operations

5.12.1 Read

Reading involves walking down the tree until we reach either a SDSSource or a SDSRemoteService.

:: SDSSource p r w = SDSSource (SDSSourceOptions p r w)

| E. sds: SDSValue Bool r (sds p r w) & RWShared sds

In the case of SDSSource, we simply execute the read function corresponding to the source
definition to retrieve the value. This is done in a blocking way. After retrieving a value, the
SDSSource rewrites itself to SDSValue, a new constructor of the data type. This denotes that the
read has been performed and prevents it from being done over and over again when evaluating
multiple asynchronous shares in the same tree.

As SDSValue is also used in writing, it contains a boolean to keep track of whether the
underlying share has already been written to. Additionally, a reference to the original share is
kept so that writing a value after reading is possible. This is used when modifying a share.
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In the case of SDSRemoteService, we use the respective HTTP or TCP handlers to create a
message and send that message over a TCP connection. We then rewrite the share so that we
keep track of the connection identifier.

Other implementations of read use the values returned from reading their children in order
to construct their own read result. For example, SDSParallel only yields a value when both of
its children have been evaluated to a value. See Fig. 5.2 for a visual example. SDSSelect only
yields a value when one of its children has been evaluated to a value, depending on the value of
the parameter. SDSLens only yield a value when the underlying share has also yielded a value.

Parallel

Source Async

(a) Initial share tree.

Parallel

Value Async

(b) Source is read, async is queued.

Parallel

Value Async

(c) Receive data for async node, not enough to
construct result yet.

Parallel

Value Value

(d) More data is received, enough to construct a
result.

Figure 5.2: The evaluation of a parallel share. Each subfigure denotes a rewrite step of
the associated task. Every rewrite step is done in response to an event. The parallel share
keeps rewriting itself in order to include rewritten children. For example, in step b, it rewrites
itself to SDSParallel (SDSValue ...) (SDSRemoteService ...). In step c, the connection
receives some data. This data cannot be parsed yet as a complete response, so the share does
not yield a value yet. In the final step, it does not rewrite itself but rather directly returns a
value.

When a task has executed the read function, it unpacks the result:

1. When a value is directly returned using the ReadResult constructor, the task can use that
value to proceed with its own evaluation.

2. When a new share is returned using the AsyncRead constructor, the task must wait for
a result from one or multiple asynchronous actions. Whenever it receives a refresh event,
it re-evaluates the new share, repeating this until reading yields a value. The task does
not know which shares are asynchronous or how many tasks are still queued. It can only
re-evaluate the share to check whether it yields a value. We have adapted the existing share
functions (get, set, upd, watch, viewSharedInformation, updateShareInformation) to
show a loading animation when it is waiting for an asynchronous result.

5.12.2 Write

For the most part, writing does not need to be concerned with asynchronous shares. We already
have a value w for the top most node in the share tree, which we divide using the respective
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write functions for the different share types. When we encounter a asynchronous share, we send
the write message to the host but do not need to wait for the result.

However, there is one share which does not fit into this approach. SDSLens needs to read the
underlying share, apply the write function to the value of the underlying share, the value to be
written to the lens, and the parameter, and write the result to the underlying share. See Fig. 5.3
for an example. This implies that we cannot, in general, make the assumption that writing can
be done synchronously or in a ”fire-and-forget” way. The modification for writing is much the
same as for reading, with the write function either returning a result (()) or a new share which
needs to be used to continue writing whenever a refresh event is received.

5.12.3 Modify

Modification of an SDSService is be done by first reading the value, and then writing the
updated value from the modification function. By storing the value read in SDSValue in addi-
tion to the original SDSRemoteService, we ensure that we can directly write the value to an
SDSRemoteService through the SDSValue. We rewrite to SDSValue to support multiple asyn-
chronous shares in a single share tree, where these shares can retrieve results at different times.

Lens

Async

(a) Initial share tree

Lens

Value

(b) Async read is queued

Lens

Value

(c) Async read no result yet

Lens

Value

(d) Receive read result, apply write
function

Lens

Value

(e) Queue write of new value to
asynchronous share

Lens

Value

(f) Complete write to lens

Figure 5.3: Example of how a lens share is written to. It illustrates that reading the under-
lying share may be required in order to write to a lens.

5.13 Example: MPD client

The implementation of asynchronous shares makes it easier to create applications which talk to
services through TCP. To show this, we choose Music Player Daemon [1], software to discover
and play music on a wide range of operating systems. We chose MPD because the TCP interface
is relatively simple. MPD communicates using a plain-text protocol. See Fig. 5.4 for an example
session.

Asynchronous shares allow for communicating with MPD. First, we model the different com-
mands and responses we can get from MPD. We leave out the full types as they are not necessary
to understand the approach.



40 CHAPTER 5. ASYNCHRONOUS SHARES

< OK MPD 0.2.0

>> currentsong

< file: Aitua/Elements/Aitua_-_01_-_Wings_-_I_Andante.mp3

< Last-Modified: 2018-10-12T08:36:00Z

< Artist: Aitua

< AlbumArtist: Aitua

< Title: Wings - I Andante

< Album: Elements

< Track: 1

< Date: 2018-10-12T04:33:56

< Genre: Classical

< Time: 89

< duration: 89.417

< Pos: 0

< Id: 1

< Ok

>> stop

< OK

Figure 5.4: A simple MPD session.

:: MPDCommand = Play | Pause | ...

:: MPDResponse = OkResponse | CurrentSongResponse (Maybe SongInformation)

| ...

Then, we can create a share using the remoteService function:

mpdShare :: MPDCommand -> SDSLens () MPDResponse ()

mpdShare command = sdsFocus command lens

where

lens :: SDSRemoteService MPDCommand MPDResponse ()

lens = remoteService (TCPShareOptions handlers)

We have to specify how incoming and outgoing messages are handled, as well the server to
which to connect. We leave out the definition of parseMPDResponse, as parsing is outside the cur-
rent scope. It is important to note that the fromTextResponse has type :: String MPDCommand

Bool -> (Maybe MPDResponse, Maybe String). The parser can use the sent command to parse
the response more efficiently, and possibly send another message to the server.

handlers =

{ host = "localhost"

, port = 6600

, createMessage = maybe "" toString

, fromTextResponse = \response command register. case command of

Nothing = Ok (Just AckResponse, Nothing)

Just command = case parseMPDResponse command response of

Error e = Error e
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Ok Nothing = Ok (Nothing, Nothing)

Ok (Just v) = Ok (Just v,

if register (registerString command) Nothing)

, writeMessageHandlers = Just (toWriteMessage, fromWriteMessage)

}

toWriteMessage p w = toString w

fromWriteMessage p message = case parseAck message of

Error e = Error e

Ok _ = Ok (Just (\_ _. False))

registerString CurrentSong = Just "idle player"

registerString PlaylistInfo = Just "idle playlist"

registerString ListAllInfo = Just "idle database"

registerString _ = Nothing

The mpdShare supports reading the current state of MPD, as well as writing commands to
perform certain actions like advancing to the next song.

The only thing left to do is to define tasks which use this share:

task = (currentSongTask

-&&- playlistTask <<@ ArrangeHorizontal)

>^* actions

where

currentSongTask = viewSharedInformation "Current Song" []

(mpdStatusRequest CurrentSong)

playlistTask = viewSharedInformation "Playlist" []

(mpdStatusRequest PlaylistInfo)

actions = [ OnAction (Action "Previous" ) (mpdAction Previous)

, OnAction (Action "Play" ) (mpdAction $ Play Nothing)

, OnAction (Action "Pause" ) (mpdAction $ Pause On)

, OnAction (Action "Next" ) (mpdAction Next)

, OnAction (Action "Set volume" ) (always (

enterInformation "Volume" []

>>= \vol. mpdShareCommand (SetVolume vol)))

, OnAction (Action "Stop" ) (mpdAction Stop)]

mpdAction w = always (mpdShareCommand w)

mpdShareCommand a = set a (mpdShare Nothing)

mpdStatusRequest r = mpdShare (Just r)

This generates a user interface in which the user can control MPD, as well as view the
current song which is playing and the current playlist. The current song and playlist are updated
automatically whenever they change, even when using another MPD client like ncmpcpp.
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Figure 5.5: Music Player Deamon UI in iTasks.

5.14 Error handling

Evaluating a share is not guaranteed to succeed. Reading from a file could result in a error or an
external service could return an error. Reading, writing, modifying, or registering could all fail.

When an error is encountered while evaluating a asynchronous share, the evaluation results
in an Error TaskException value. This value is propagated to the task evaluating the share.
The programmer can explicitly handle these exceptions, allowing him to deal with failures on a
share level. When the programmer does not catch these exceptions, they are propagated to the
end user.

5.15 Asynchronous SDSSource

Earlier in this chapter we mentioned that SDSSource is always evaluated in a blocking way. This
complicates things when trying to read or search through a large file, for example. It is currently
not possible to perform small pieces of a computation, while still allowing other tasks and shares
to perform their work. However, we will try to show how this can be implemented. The actual
implementation of this is still future work due to time constraints.
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First, the definition of SDSSource must be changed:

:: SDSSource p r w = SDSSource (Maybe r) (SDSSourceOptions p r w)

| E. sds: SDSValue Bool r (sds p r w) & RWShared sds

:: SDSSourceOptions p r w =

{ name :: String

, read :: p *IWorld -> *(ReadResult r, *IWorld)

, write :: p w *IWorld -> *(WriteResult w, *IWorld)

}

The main changes concern the read and write. We allow these functions to return partial
results, so that these results can be used later to resume the computation. One possible im-
plementation is to rewrite the read or write functions in SDSSourceOptions, keeping track of
intermediate results by way of currying.

The remaining obstacle is to ensure that the task is refreshed, so that the computation can
be resumed. This can be achieved by the read and write by queueing refresh events for the
evaluating task after evaluation. Because the refresh event is added to the end of the queue,
other tasks are evaluated before the share is evaluated again. Another option is registering the
task to values of the clock. This ensures the share is evaluated at a constant frequency.

5.16 Results

We proposed a system allowing asynchronous evaluation of shares. The main idea is rewriting
shares, keeping track of jobs which need to be completed before the share operation can yield a
value. See Table Fig. 5.6 for a concise overview of the results for each requirement.

Programmers using shares do not need to know whether a share is asynchronous. All required
functions to build shares or use them in task definitions have been adapted to be able to handle
asynchronous shares.

Existing iTasks programs may need to be adapted in order to work with the interface changes
of the iTasks.Internal.SDS module. Most programs do not directly depend on these definitions,
however, and are able to be run without major modifications.

Asynchronous share evaluation can yield errors which are propagated to the associated task.
These errors do not involve the evaluation of other tasks or other shares, as they are separated
per task, per share evaluation.

All this is done in a non-blocking way, ensuring multiple users can work on the same system
without interference.

There is no time-out mechanism in place to avoid endless waiting when a server does not
respond. There is also no fall-back or try again mechanism in place. Therefore, tasks which
require an asynchronous value in order to yield a result are not guaranteed to ever stabilize with
a value or an error, depending on the availability of the data provider. The only reason for not
implementing a time-out mechanism is a lack of time. We do not see any technical reasons why
this could not be implemented.

We have not tested the performance of asynchronous shares. We suspect they will improve the
user experience. This is mainly due to the fact that long calculations involving external services
no longer involve waiting for a result in a blocking way. This should improve the responsiveness
of the iTasks server and reduce the time a user needs to wait for a response from the server.
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Requirement Fullfilled
US Yes
SEM Yes
ERR1 Yes
ERR2 Yes
TIME No
BLOCK Yes

Figure 5.6: Requirements and whether the asynchronous share implementation full fills them



Chapter 6

Distributed Shares

Distributed computing is gaining more and more popularity. Open source frameworks like Kafka,
MapReduce, and Apache Spark allow programmers to easily design distributed systems capable
of processing large amounts of data. In iTasks, distributed computing involves sending tasks
to other iTasks systems by using the distributed extension introduced by Oortgiese et al. [12].
This extension supports sharing tasks between devices. Devices can be other iTasks servers or
Android phones. It also supports observing task values on other machines, assigning tasks to
users on other machines, and transferring an existing task from one machine to another.

Sharing data between devices can be rather cumbersome. Retrieving data from another
machine for example is done by creating a task that uses the read function to retrieve the value
of a share on the other machine. The task is serialized and sent to the other machine, where it
is executed. This results in unnecessary overhead: It should be possible to retrieve a share value
from another iTasks server without using a task.

In this chapter, we show how we can communicate between different iTasks servers using
the share system. We introduce a new share type that allows reading, writing, and modifying a
share on another iTasks server. We show how this share can be used in practice through multiple
examples, and how the semantics of the share system change when using the new share type.

6.1 Distributed iTasks

A distributed environment (as implemented by Oortgiese et al. [12]) is an environment with
multiple iTasks servers. These can be physical servers, normal desktop PCs, and laptops and
mobile phones. iTasks allows users to send tasks to a different device in a distributed environment,
evaluate tasks which are sent to their devices, and retrieve or update information on another
device.

The distributed extensions uses graph serialization for communication. The computation
model of Clean is based on Term Graph Rewriting [13], which entails that all computations
consist of applying rewrite rules to a program graph. This graph is stored directly in heap
memory. It can thus be serialized to text, sent over to another server, de-serialized, and executed.

There are prerequisites for this to work. Either the executables need to be exactly the same,
or the client needs to use debug symbols so that the server can use their list of debug symbols
to de-serialize the graph. The graph is lazily evaluated and may contain all kinds of references
to functions. Those functions may not have the exact same memory address across different
machines or architectures. By storing the symbols and their relative addresses, we can always
get the correct memory address for the current process to resolve function calls.

45
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6.2 Distributed Share System

A share tree consists of leaves and nodes. Leaves can interact directly with the environ-
ment. SDSSource allows for interaction with the system on which the iTasks server is running.
SDSRemoteService allows to interact with services on the internet in an asynchronous way.

The main idea of a distributed share system is that we can perform share evaluation on an-
other machine. More precisely, when performing an arbitrary share operation, we allow subtrees
in the share tree to be evaluated on other machines. In other words, we support moving arbitrary
sub-share evaluation to different machines.

6.3 Requirements

See Table Table 6.1 for a concise overview of the requirements of a distributed share system.
The main requirement is that shares can be used to communicate between multiple iTasks

servers. The standard read, write, modify, and register functions must all be supported.
The second requirement is that we can rely on the type system to ensure that communication

is done correctly between iTasks servers.
The third requirement is especially important in a distributed environment. Dealing with

many servers, it is important to identify which machine caused an error and what should be
done to solve it. We therefore require that all errors are propagated to the machine which
originally requested the operation. The error should also be descriptive, detailing where in the
distributed environment the error occurred and what the exact error was.

Category Name Description
Communication COM As an iTasks programmer, I can use shares to communi-

cate with other iTasks systems, reading from, writing to,
and updating shares on that system.

Error handling ERR3 An error on a another iTasks system must be propagated
in such a way that it can be handled by the programmer,
using the existing exception mechanism.

Type safety TYP As an iTasks programmer, I can rely on the type checker
to ensure that distributed share use is type safe. I will not
get unexpected runtime errors.

Table 6.1: Requirements on an distributed, asynchronous share system from the perspective
of an iTasks programmer.

6.3.1 SDSSource: Communication between iTasks systems

We introduce a new share type that uses graph serialization to communicate the required oper-
ations to other iTasks servers.

:: SDSRemoteSource p r w

= E. sds: SDSRemoteSource (sds p r w) (Maybe ConnectionId)

SDSShareOptions & RWShared sds

:: SDSShareOptions =

{ domain :: String
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, port :: Int

}

This new share type can be used as a node in the share tree. The underlying share is sent
over to the host machine to be evaluated. SDSShareOptions can be used to configure the host
and port to which the share message should be sent.

Evaluation of a SDSRemoteSource involves sending a message to another iTasks server. This
message must contain enough information for the other server to perform the computation. We
introduce a new type by which servers can communicate.

:: SDSRequest p r w = E. sds: SDSReadRequest (sds p r w) p & Readable sds

| E. sds: SDSRegisterRequest (sds p r w) p SDSIdentity SDSIdentity

TaskId Int & Registrable sds

| E. sds: SDSWriteRequest (sds p r w) p w & Writeable sds

| E. sds: SDSModifyRequest (sds p r w) p (r -> MaybeError TaskException w)

& Modifiable sds

| SDSRefreshRequest TaskId SDSIdentity

Each of the alternatives contains enough information to resume the computation on another
machine. We send over the share that should be evaluated and the parameter with which the
share should be evaluated. The context restrictions ensure that all required functions for per-
forming the required operation on the remote machine are available when receiving the request.
Depending on the operation we provide additional information. For example, modifying requires
we send over the modification function.

Values of type SDSRequest p r w are serialized to String using aforementioned graph seri-
alization. The share works in the same way as SDSRemoteService: A TCP connection is queued,
and the share rewrites itself to incorporate the connection identifier. When a refresh event is
received, evaluating the remote source share involves checking the environment for a result. If a
result is found, task evaluation is resumed in the usual way.

We provide an example to illustrate simple distributed share usage. Then, we explain how
share modification and share registration are done.

6.4 Example: Distributed Proxy

One of the advantages of distributed computing is that resources may be shares between devices.
One of these resources is a connection to the internet. We show how an iTasks server can be used
as a proxy, sharing its connection to the internet. This example also highlights that asynchronous
shares can be nested.

Similar to the first example, we define a service share which supports retrieving the latest
news from NewsAPI1. This API returns a JSON list of all the latest headlines for a specific
country, in this case the Netherlands.

newsOptions :: WebServiceShareOptions () (Either String NewsApiResponse) ()

newsOptions = HTTPShareOptions handlers

where

handlers = { host = "newsapi.org"

, port = 80

1http://newsapi.org/

http://newsapi.org/
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, createRequest = \_. {HTTPRequest|newHTTPRequest &

req_protocol = HTTPProtoHTTPS

, server_name = "newsapi.org"

, req_path = "/v2/top-headlines"

, req_query = "?country=nl&apiKey=" +++ newsapikey}

, fromResponse = \resp _. fromResp resp

, writeHandlers = Nothing

}

fromResp {rsp_code, rsp_reason, rsp_data}

| rsp_code < 200 || rsp_code >= 300

= Ok (Left (toString rsp_code +++ ": " +++ rsp_reason))

= case fromJSON (fromString rsp_data) of

Nothing = Ok (Left "Could not transform from JSON" )

Just d = Ok (Right d)

We define a share which focusses only on the list of news headlines, and does not allow writing
to the service:

mapReadError :: (r -> MaybeError TaskException r`) (sds p r w)

-> SDSLens p r` w | iTask p & RWShared sds

newsShare :: SDSLens () [NewsApiArticle] ()

newsShare = mapReadError read (remoteService newsOptions)

where

read (Left error) = Error (exception error)

read (Right {articles}) = Ok articles

We have defined a share which can retrieve headlines, however it does so on the current
machine. We need to be able to evaluate this share on another machine in order to have access
to the internet. We can do this using the newly introduced SDSRemoteSource, constructed by
using the remoteShare function:

newsProxyShare :: SDSRemoteSource () [NewsApiArticle] ()

newsProxyShare = remoteShare newsShare {domain = "TEST" , port = 9090}

Start world = doTasks (get newsProxyShare

>>= viewInformation "The current news" []) world

These are all the definitions that are needed to use another iTasks server as proxy. The
newsProxyShare is serialized, sent over to the proxy server, and evaluated on the proxy server.
There, it retrieves the value of the share asynchronously and responds this value to the task
server that made the original request.

All in all, it is easy to use another iTasks instance as proxy and requires no additional
programming or configuration, aside from defining a simple remote share.

6.4.1 The Problem with Modifying

See the share tree in Fig. 6.2. We have a parallel share with two underlying remote shares.
Reading from this share is easy enough: We just queue two asynchronous jobs and calculate the
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Figure 6.1: Simplistic UI of the news proxy application

Parallel

Async Async

Figure 6.2: A share configuration which does not guarantee atomic updating of the underlying
asynchronous shares

value for the whole share whenever we have a result for both asynchronous shares. The same
holds for writing.

Modifying this share is different. We do not have a value which we can directly split across
the two asynchronous shares, as we do when writing to the share. We have a function f :: r ->

w which we need to apply to the whole share. In order to get a value of type r we need to read
from both underlying shares and apply the read :: (r1, r2) -> r function which is available
from the parallel definition to both results. We could wrap f with read, but that would still
only yield a function of type (r1, r2) -> w requiring results from both shares.

In other words, we cannot split the modify function across the two underlying shares and this
implies we lose the atomic updating of those shares. We resort to first reading the whole parallel
share, applying the function, and writing the result.

This illustrates that it is not in general possible to modify a share atomically any more. When
there are no asynchronous share in a share tree we can still guarantee that modifying is done
atomically. When there are asynchronous shares in the tree, it depends on the configuration of
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the tree and the implementation of the modify function for different shares. The only way to
determine whether a share can be modified atomically is to look at the structure of the tree.

If the root node of a share tree is SDSRemoteSource and there are no other asynchronous
components in the tree, we can guarantee that modification is done atomically. Evaluating the
rest of the tree is done on another iTasks system in a blocking way just like a normal share
without asynchronous components.

The following function illustrates the logic which should be used to determine whether a share
can be modified atomically. It is not real Clean-code, as the different shares do not belong to
the same algebraic data type. isLocal returns whether there are any asynchronous shares in a
sub tree.

atomicallyModifiable (SDSSource _) = True

atomicallyModifiable (SDSSequence left right opts)

= isLocal left && atomicallyModifiable right

atomicallyModifiable (SDSLens sub opts)

= isLocal sub || isJust opts.reducer && atomicallyModifiable sub

atomicallyModifiable (SDSParallel left right opts)

= isLocal left && isLocal right

atomicallyModifiable (SDSSelect left right opts)

= atomicallyModifiable left && atomicallyModifable right

atomicallyModifiable (SDSRemoteSource source opts)

= atomicallyModifiable source

In the case of SDSParallel it is not possible to update underlying asynchronous shares
atomically. SDSSequence is only atomically modifiable when the left share is a local share which
can be directly read as parameter for the right share.

In the case of SDSSelect we can always guarantee atomic updating, as the two child shares
have the same type as the select. This allows us to just pass the same modification function to
the children.

6.4.2 SDSLens

Whether we can atomically modify a lens is a bit more difficult. Recall the lens definition:

:: SDSLens p r w = E. ps rs ws sds: SDSLens (sds ps rs ws)

(SDSLensOptions p r w ps rs ws) & RWShared sds

:: SDSLensOptions p r w ps rs ws =

{ name :: String

, param :: p -> ps

, read :: p r -> rs

, write :: p w rs -> ws

, notify :: p p w rs -> NotifyPred p

}

We have a modify function r -> w. In order to atomically modify the underlying share we
need a function typed rs -> ws. We can wrap the modify function with the read and param
functions so that we get a function of type rs -> w. Now we only need a function from w to ws.
Again, we use the existing write function which yields us a modification function rs -> ws.
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Now it is possible to apply the wrapped modify function to the underlying share. There is
still one problem: The function yields a value of type ws, whereas modifying the whole share
should yield a value of type w. We need a function from ws to w.

We introduce a reducer which does this exact job:

:: SDSLensOptions p r w ps rs ws =

{ ...

, reducer :: Maybe (p ws -> w)

}

Note that the type of reducer field is Maybe (p ws -> w). It is not always possible to define
a proper reducer. In that case, there is no other option than to first read the whole lens and
then write the value of applying the modification function to the lens.

6.4.3 Remote registration

Registration to a share in a distributed context can involve registering to a share on another
server. To properly record such a remote registration we need to record enough information to
later send a message to refresh the relevant task. We need a hostname and a port to which we
can send a message.

A notify request has the following type:

:: SDSNotifyRequest =

{ reqTaskId :: TaskId

, reqSDSId :: SDSIdentity

, cmpParam :: Dynamic

}

A request contains the task which should be notified, the share to which the task has reg-
istered, and the parameter which the task used to register. These requests are stored in the
IWorld.

We expand this type to be able to record the necessary information:

:: RemoteNotifyOptions =

{ hostToNotify :: String

, portToNotify :: Int

, remoteSdsId :: SDSIdentity

}

:: SDSNotifyRequest =

{ ...

, remoteOptions :: (Maybe RemoteNotifyOptions)

}
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Now we can expand TaskContext to contain the required information so that the proper
notify request can be created:

:: TaskContext =

...

| RemoteTaskContext

TaskId // The id of the original task reading the share

TaskId // The id of the current task handling the request

SDSIdentity // The id of the share on the remote server

String // The hostname of the original task reading the share

Int // The port to which to send a refresh notification

Whenever a register request is received, we create a TaskContext with the relevant informa-
tion and apply the normal readRegister function. The readRegister implementation takes
care of creating the correct SDSNotifyRequest depending on the context type.

A refresh message is sent to all registered clients whenever a share is written to. We use the
stored SDSIdentity to refresh all tasks registered to the share on the remote machine.

6.5 Task trees with multiple asynchronous shares

It is possible to nest multiple asynchronous shares. See Fig. 6.3 for an example.

Lens3

Async3

Lens2

Async2

Source

(a) A share with multiple asynchronous
nodes. The dotted arrow denotes an asyn-
chronous dependency.

Server3

Server2

Server1

(b) iTasks servers topology. Lens3 and
Async3 are used on Server3. Lens2 and
Async2 are used on Server2.

Figure 6.3

Whenever someone uses the share on Server3, a message needs to be sent to Server2, which in
turn requires a message to be sent to Server1. The instance in the middle needs to keep state of
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both the outgoing messages which still need to be completed and which incoming message they
correspond to.

In order to enable this server to keep track of all this, we introduce a task which has the sole
responsibility to receive messages from other iTasks instances, perform the requested operation
by evaluating shares, and send a reply whenever the operation is finished. We will refer to this
task as the share service task. This task is started automatically when the iTasks server is started
using the --distributed option or enabled at compile time in the engine.

The service consists of two parts: It has connection handlers to deal with incoming connections
from other clients. It also responds to normal events generated by the system. This second part
allows the task to send messages and receive responses to those messages asynchronously.

Whenever a message is received by the share service task, it unpacks the message. The service
tasks performs the required operation (read, write, etc.). If the operation yields a asynchronous
result, any number of asynchronous jobs have been queued. These jobs are awaiting a response
from another server. They are connected to the share service task by way of the task identifier.
We store the rewritten share in relation to the incoming connection identifier. We use a share
for this purpose.

When the share service task receives a refresh event, one of the asynchronous jobs for one of
the pending share requests has received more data. The service task reads from its own share to
retrieve the current state for all connections. It then evaluates all pending share requests. If a
request yields a value, it is sent in response to the original client that sent the request. Otherwise
we store the rewritten share and wait for additional data.

iTasks3 iTasks2 iTasks1

Evaluate Async3

Evaluate Async2

Evaluate source

Respond with value for Async2

Evaluate Lens2

Respond with value for Async1

Evaluate Lens3

Figure 6.4: A sequence diagram of evaluating the share in Fig. 6.3a. Note that the time
between sending a message and receiving a response is not spent waiting for a response. Rather,
the server can do other work until a response is received. “Evaluate source”, “Evaluate Lens2”,
and “Evaluate Lens3” are done in a blocking way on the respective servers.
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6.6 Error Handling

In distributed systems, error handling is important. An error should give a good indication what
went wrong, as well as where in the distributed system the error occurred.

When a share evaluation yields an error, the error is sent across multiple machines to the
original client which requested the evaluation. In this way, it is possible to get a trace in the
share tree which helps the programmer to determine where the error came from. The error is
sent across devices is typed. See Fig. 6.5 for a example of a trace which is shown to a user when
the exception is not handled.

Any errors in share evaluation are propagated to the iTasks server which initiated the request.
Errors in communicating between iTasks servers are also handled. There is no time-out mecha-
nism in place. Once a connection between iTasks servers has been established, it is assumed that
the server that accepted the connection will eventually reply. When the accepting server closes
the connection without replying (due to an internal error, for instance), the requesting server
detects this. The task related to the operation receives an error.

Figure 6.5: Screen shot of how an exception is shown. The message denotes that evaluating
an asynchronous share to host TEST:9998 has failed, because it has in turn failed to evaluate
an asynchronous share to host TEST:9999.

6.7 Example: Distributed Blockchain

Blockchain [11] is a great example of a distributed system working together to achieve a common
goal. The aim is to store data in a block chain, which ensures that it cannot be tampered with
once it is stored in the chain. An application of blockchain is storing financial transactions in a
safe way. We refer to the paper by Nakamoto [11] for a thorough explanation of blockchain.

We implement a simple version of block chain in iTasks. In this version, there exists a
single iTasks instance which contains the current version of the blockchain. In addition to the
blockchain host, there is an arbitrary number of workers. These iTasks instances are tasked with
mining new blocks. Each of the workers contains a list of data they need to integrate into the
blockchain. Each workers attempts to mine a new block given the their data queue. When they
find a block which fits, they attempt to update the blockchain on the server.

Multiple workers are mining at the same time. This could cause race conditions: If one
worker has just appended a new block to the chain, other workers are still trying to mine using
the old version of the block chain. There is no easy solution to this: We cannot continuously
check whether the chain has been updated, because that would cause unacceptable slowdowns in
mining. Our solution is to let the blockchain host accept or reject new blocks. If the host accepts
the new block, it adds it to the chain. If the host does not accept the block, it will respond with
an error to the worker who then restarts mining.

We start with defining what a block looks like:
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:: Block =

{ nonce :: String

, prevHash :: String

, data :: String

, hash :: String

}

A block is dependent on the previous block by referencing the hash of the previous block. It
has some arbitrary data, represented as a string. The nonce is what a miner can manipulate in
order to let the hash adhere to the validation properties.

We then define a share which contains the blockchain, and another share which gives access
to the most recent block:

blockchain = sharedStore "chain" [{nonce = "" , prevHash = "" ,

data="INITIALBLOCK" , hash="INITIALBLOCK" }]

dataQueue :: SDSLens () [String] [String]

dataQueue = sharedStore "data" (map toString [1..200])

hdChain :: SDSLens () Block Block

hdChain = mapRead readLast

((sdsLens "verifyChain" id read write notify reduce) blockchain)

where

readLast [b : bs] = b

read = SDSRead \p rs. (Ok rs)

write = SDSWrite \_ rs newBlock.

if (b.Block.hash <> newBlock.prevHash

|| nonceNotUnique newBlock.nonce rs)

(Error (exception "Block does not fit into chain!" ))

(Ok (Just ([newBlock : rs]))))

notify = SDSNotify \pw rs w ts p. True

reduce = Nothing

nonceNotUnique _ [] = False

nonceNotUnique nonce [b : bs]

= nonce == b.nonce || nonceNotUnique nonce bs

The first definition is straight-forward, the blockchain share contains a list of blocks. We also
define a queue of initial data to be added, dataQueue. The second definition is more complicated.
Reading from hdChain yields the most recent block in the chain. Writing a new block to the
share will check whether the new block references the most recent block in the chain, and whether
the nonce used in the block in unique in the current chain. If this is not the case, an exception
is thrown.
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We then define a task which allows for adding data to the head of the queue, as well as
viewing the current queue and chain:

viewChain = viewSharedInformation "Current blockchain" [] blockchain

appendQueue = forever (enterInformation "Enter data to store in blockchain" []

>>= \data. upd (\d. d ++ [data]) dataQueue)

We can then define the worker task to be executed on different machines:

remoteMine :: Task ()

remoteMine = enterInformation "Enter blockchain host" []

>>= \remoteOptions. (appendQueue -&&- mineWithData remoteOptions) @! ()

where

mineWithData :: SDSShareOptions -> Task ()

mineWithData remoteOptions

= whileUnchanged remoteShare hdChain remoteOptions

(\lastBlock. get dataQueue

>>= \data. case data of

[] = return () @? const NoValue

[todo:rest] = get currentTimestamp

>>= \ts.

return (mine sha1 (startsWith "00" )

lastBlock.hash todo ts)

>>= \newBlock. catchAll

(updateChain remoteOptions newBlock rest)

(\e. return ())

)

where

updateChain remoteOptions newBlock rest

= set newBlock (remoteShare hdChain remoteOptions)

>>| set rest dataQueue

>>| viewTitle "Done mining" @! ()

Start w = doTasks tasks w

where

tasks = [ publish "/" (const viewChain)

, publish "/mine" (const remoteMine)]

This task first requires a user to enter the connection details for the blockchain host. Then, it
will indefinitely try to read from the data queue and mine new blocks. Mining involves reading
the most recent block in the chain, retrieve the current time (for random seed initialization), and
adjusting the nonce until the hash is valid. Then, we try to write the new block to the chain. If
it fails, we restart the whole mining process with reading the data queue.

We leave out the exact definition of the mine function.

We can effectively use this method to mine with multiple workers at the same time, which
speeds up the mining process. Multiple miners will be notified whenever the blockchain is
changed, after which they restart their mining process.
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6.8 Distributed iTasks

We implement the distributed extension, originally built by Oortgiese [12], using shares instead
of manually defining a distributed client task and a distributed server task. Asynchronous shares
are a good candidate to implement sharing tasks with another device, to register to a distributed
task value, or to claim a task from another device. They ensure that communication is done
asynchronously and rely on the type system for correct communication.

We will not explain the whole distributed extension. We show how sharing a task and selecting
a task to work on can be done.

Sending a task to another server can be done in the following way:

addTaskToDomain :: Domain (Task a) -> Task ()

addTaskToDomain domain task = appendDomainTask task domain

>>= \taskId. viewInformation "Added task" [] taskId @! ())

Here, appendDomainTask is a predefined task which adds a task to a domain by writing to
a share on the domain host. The current list of domain tasks can be retrieved by using existing
task administration shares:

selectTask = enterChoiceWithShared "Select task" []

(sdsFocus testUser taskInstancesForUser)

>>= \{TaskInstance|instanceNo}. workOn instanceNo @! ()

The selectTask function allows a user to select one of the available tasks, after which they
start working on it directly.

The task result in a domain can be registered to by using the following predefined function:

viewTaskResult :: TaskId Domain (Task a) -> Task () | iTask a

Here, the share system is used to register to the result share on another iTasks server. When
the task value is updated on the other machine, the viewTaskResult task is also updated.
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Chapter 7

Conclusion and Discussion

The iTasks framework is a multi-user, distributed framework that allows easy definition of tasks
and the data required to execute those tasks. This data is represented with and abstracted over
using shares, providing a single interface for tasks to interact with the outside world. Using
shares is done synchronously, with the major disadvantage that IO operations are done in a
blocking way.

We introduced an asynchronous share system that provides a way to evaluate a share without
blocking an iTasks server. We used the system to implement asynchronous communication with
the internet. Multiple tasks can use these shares without interfering with each other, and without
having to wait for other tasks to complete their work. Most guarantees provided by the share
system are maintained. The share API most often used by iTasks programmers has not changed.
Existing programs do not need to be adapted to maintain the same behaviour.

We have also used the asynchronous share system to realize asynchronous, type-safe commu-
nication between iTasks servers in a distributed context. These distributed shares allow share
evaluation on another system. Arbitrary share tree evaluation can be moved to another machine.
This provides an easy API for iTasks programmers to distribute computations across multiple
machines. Distributed shares can be arbitrarily nested, which means that arbitrary iTasks server
topologies are supported.

The semantics of various share operations have changed with distributed shares, although only
when they are used. In most cases, the semantics of reading and writing remains unchanged.
The semantics of modifying have changed, as we can no longer guarantee atomic modification of
a share in general when distributed shares are involved.

Finally, we have shown practical uses of asynchronous shares through multiple examples. It is
easy to build tasks and shares upon asynchronous shares. This is essential when communicating
with the internet or when performing other lengthy operations.

7.1 Limitations and Future Work

Asynchronous shares are a powerful tool. However, there are still some concerns and limitations
to the system.

First, a drawback is that it is not possible to see from the type of a share whether it is asyn-
chronous or not. Although not strictly necessary for the execution of a program, a programmer
may find such information useful when reasoning about shares. A related issue is that we have
to have very strong restrictions when building shares. Take for example the lens definition:
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:: SDSLens p r w = E. sds: SDSLens (sds ps rs ws) ... & RWShared sds & ...

If we build a lens atop a share which is only Readable, we would like for the lens to also be
only Readable. Additionally, if we build a lens on an asynchronous share, we would like the lens
to also be asynchronous.

Second, there is no time-out mechanism. A time-out mechanism is essential when dealing
with external services which may never respond, either due to network problems or performance
issues. We expect this not to be very difficult to implement. We think that implementing this
should not be too difficult.

Third, it is not possible to keep state between different evaluations of a share. This is best
explained by example: Suppose we have an asynchronous share which opens a TCP connection
to some service. We register a task to the changes of that service, in such a way that the service
sends us a message when the data is changed. When we receive such a message, the associated
task is re-evaluated and the connection is closed. The task registers itself again, opening a new
connection to the TCP service. It would be better to keep hold of the old connection to prevent
continuously closing and opening connections. To this end, it would be great if we could keep
some state between different evaluations of the same share. We do not expect this to be an easy
problem to solve.

Fourth, due to the fact that there are no constraints on the structure of a share, it is possible
to create two asynchronous shares on two different machines which continuously refer to each
other, creating a non-terminating program.

We have not investigated the performance of distributed shares which make use of graph
serialization. Some investigation should be done to determine what the overhead is of distributed
shares, and whether the overhead is acceptable.

We have done some testing for error handling between iTasks servers. However, we have not
done an extensive investigation into all possible kind of failures. It is future work to determine
whether the existing error handling mechanism is sufficient.

Finally, it is currently not possible to define asynchronous shares which do not use TCP
connections. Further investigation is required to implement the possible solution from the end
of Chapter 5.

7.2 Related work

Mogk et al. propose REScala [8], a multi-tier reactive distributed programming language. The
authors extends the language to be fault-tolerant, in the sense that different devices can rollback
their internal state to the last known good state, and that errors are propagated between these
devices. Programmers can decide how to handle errors in a signal, for instance when a signal is
disconnected. The main difference with iTasks and the asynchronous share system is REScala is
reactive and that it allows for explicit error recovery with automated rollback.

Another way to handle failures in a distributed context in proposed by Myter et al. [10].
They focus especially on partial failures and enable programmers to deal with them explicitly.
They introduce leased signals, where the provider of a signal and a consumer of a signal make an
agreement about the validity of the signal. When this agreement is violated, the signal provider
is assumed to have failed by the signal consumer. Another contribution by the same authors is
[9], where they propose a domain specific language which can manage reactive events as well as
replication of data across multiple machines.

Weisenburger et al. [21] propose ScalaLoci, a reactive distributed programming language that
uses placement types to denote that a signal or event should be retrieved from another device.
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Other popular approaches to distributed programming are MapReduce [3] and Apache Spark
[19]. These services allow for easy distribution of a computation across a cluster. The main
appeal of these approaches is that they enable working with large datasets without having to
deal with managing the distribution of the dataset across a cluster. The downside it that they
are not designed to work with interactive applications like iTasks is.
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