
First-Class Data Types in Shallow Embedded Domain-Specific
Languages using Metaprogramming

Mart Lubbers
Institute for Computing and

Information Sciences
Radboud University

Nijmegen, The Netherlands
mart@cs.ru.nl

Pieter Koopman
Institute for Computing and

Information Sciences
Radboud University

Nijmegen, The Netherlands
pieter@cs.ru.nl

Rinus Plasmeijer
Institute for Computing and

Information Sciences
Radboud University

Nijmegen, The Netherlands
rinus@cs.ru.nl

ABSTRACT
Functional programming languages are excellent for hosting em-
bedded domain specific languages (eDSLs) because of their rich
type systems, minimal syntax, and referential transparency. How-
ever, data types defined in the host language are not automatically
available in the embedded language. To do so, all the operations
on the data type must be ported to the eDSL resulting in a lot of
boilerplate.

This paper shows that by using metaprogramming, all first-order
user-defined data types can be automatically made first class in
shallow embedded DSLs. We show this by providing an implemen-
tation in Template Haskell for a typical DSL with two different
semantics. Furthermore, we show that by utilising quasiquotation,
there is hardly any burden on the syntax. Finally, the paper also
serves as a gentle introduction to Template Haskell.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Source code generation; Functional languages.

KEYWORDS
functional programming, domain-specific languages, metaprogram-
ming, Haskell, Template Haskell

ACM Reference Format:
Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer. 2022. First-Class Data
Types in Shallow Embedded Domain-Specific Languages using Metapro-
gramming. In Symposium on Implementation and Application of Functional
Languages (IFL 2022), August 31–September 02, 2022, Copenhagen, Denmark.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3587216.3587219

1 INTRODUCTION
Functional programming languages are excellent candidates for
hosting embedded domain specific languages (eDSLs) because of
their rich type systems, minimal syntax, and referential trans-
parency. By expressing the language constructs in the host language,
the parser, the type checker, and the run time can be inherited from

This work is licensed under a Creative Commons Attribution International
4.0 License.

IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9831-2/22/08.
https://doi.org/10.1145/3587216.3587219

the host language. Unfortunately, data types defined in the host
language are not automatically available in the eDSL.

The two main strategies for embedding DSLs in a functional lan-
guage are deep embedding (also called initial) and shallow embed-
ding (also called final). Deep embedding represents the constructs
in the language as data types and the semantics as functions over
these data types. This makes extending the language with new
semantics effortless: just add another function. In contrast, adding
language constructs requires changing the data type and updating
all existing semantics to support this new construct. Shallow embed-
ding on the other hand models the language constructs as functions
with the semantics embedded. Consequently, adding a construct is
easy, i.e. it only entails adding another function. Contrarily, adding
semantics requires adapting all language constructs. Lifting the
functions to type classes, i.e. parametrising the constructs over
the semantics, allows extension of the language both in constructs
and in semantics orthogonally. This advanced style of embedding
is called tagless-final or class-based shallow embedding [Kiselyov
2012].

While it is often possible to lift values of a user-defined data type
to a value in the DSL, it is not possible to interact with it using DSL
constructs, since they are not first-class citizens.

Concretely, it is not possible to (1) construct values from expres-
sions using a constructor, (2) deconstruct values into expressions
using a deconstructor or pattern matching, (3) test which construc-
tor the value holds. The functions for this are simply not available
automatically in the embedded language. For some semantics—such
as an interpreter—it is possible to directly lift the functions from the
host language to the DSL. In other cases—e.g. compiling DSLs such
as a compiler or a printer—this is not possible [Elliott et al. 2003].
Thus, all of the operations on the data type have to be defined by
hand requiring a lot of plumbing and resulting in a lot of boilerplate
code.

To relieve the burden of adding all these functions, metaprogram-
ming—and custom quasiquoters—can be used. Metaprogramming
entails that some parts of the program are generated by a program
itself, i.e. the program is data. Quasiquotation is a metaprogram-
ming mechanism that allows entering verbatim code for which
a—possibly user defined—translation is used to convert the verba-
tim code to host language AST nodes. Metaprogramming allows
functions to be added to the program at compile time based on the
structure of user-defined data types.

https://orcid.org/0000-0002-4015-4878
https://orcid.org/0000-0002-3688-0957
https://doi.org/10.1145/3587216.3587219
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3587216.3587219
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587216.3587219&domain=pdf&date_stamp=2023-06-05

IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

1.1 Contributions of the paper
This paper shows that with the use of metaprogramming, all first-
order user-defined data types can automatically be made first class
for shallow embedded DSLs. It does so by providing an implemen-
tation in Template Haskell for a typical DSL with two different
semantics: an interpreter and a pretty printer. Furthermore, we
show that by utilising quasiquotation, there is hardly any burden
on the syntax. Finally, the paper also serves as a gentle introduction
to Template Haskell and reflects on the process of using Template
Haskell.

2 TAGLESS-FINAL EMBEDDING
Tagless-final embedding is an upgrade to standard shallow embed-
ding achieved by lifting all language construct functions to type
classes. As a result, views on the DSL are data types implementing
these classes.

To illustrate the technique, a simple DSL, a language consisting
of literals and addition, is outlined. This language, implemented
according to the tagless-final style [Carette et al. 2009] in Has-
kell [Peyton Jones 2003] consists initially only of one type class
containing two functions. The lit function lifts values from the
host language to the DSL domain. The class constraint Show is
enforced on the type variable a to make sure that the value can
be printed. The infix function ⊕ represents the addition of two
expressions in the DSL.
class Expr v where

lit :: Show a ⇒ a � v a

(⊕) :: Num a ⇒ v a � v a � v a

infixl 6 ⊕
The implementation of a view on the DSL is achieved by im-

plementing the type classes with the data type representing the
view. In the case of our example DSL, an interpreter accounting for
failure may be implemented as an instance for the Maybe type. The
standard infix functor application and infix sequential application
are used so that potential failure is abstracted away from.1

instance Expr Maybe where
lit a = Just a

(⊕) l r = (+) <$> l <∗> r

2.1 Adding language constructs
To add an extra language construct we define a new class housing
it. For example, to add division we define a new class as follows:
class Div v where

(⊘) :: Integral a ⇒ v a � v a � v a

infixl 7 ⊘
Division is an operation that is undefined if the right operand is

equal to zero. To capture this behaviour, the Nothing constructor
from Maybe is used to represent errors. Both sides of the division
operator are evaluated. If the right-hand side is zero, the division is
not performed and an error is returned instead:

1

<$> :: (a � b) � f a � f b

<∗> :: f (a � b) � f a � f b

infixl 4 <$>, <∗>

instance Div Maybe where
(⊘) l r = l ≫= _x�r ≫= _y�

if y == 0 then Nothing else Just (x `div` y)

2.2 Adding semantics
To add semantics to the DSL, the existing classes are implemented
with a novel data type representing the view on the DSL. First a data
type representing the semantics is defined. In this case, the printer
is kept very simple for brevity and just defined as a newtype of
a string to store the printed representation.2 Since the language
is typed, the printer data type has to have a type variable but it is
only used during typing—i.e. a phantom type [Leijen and Meijer
2000]:

newtype Printer a = P { runPrinter :: String }

The class instances for Expr and Div for the pretty printer are
straightforward and as follows:

instance Expr Printer where
lit a = P (show a)

(⊕) l r = P (" (" ++ runPrinter l

++ "+" ++ runPrinter r ++ ") ")

instance Div Printer where
(⊘) l r = P (" (" ++ runPrinter l

++ " / " ++ runPrinter r ++ ") ")

2.3 Functions
Adding functions to the language is achieved by adding a multi-
parameter class to the DSL. The type of the class function allows
for the implementation to only allow first-order functions by sup-
plying the arguments in a tuple. Furthermore, with the :- operator
the syntax becomes useable. Finally, by defining the functions as a
higher order abstract syntax (HOAS) type safety is achieved [Chli-
pala 2008; Pfenning and Elliott 1988]. The complete definition looks
as follows:

class Function a v where
fun :: ((a � v s) � In (a � v s) (v u)) � v u

data In a b = a :- b

infix 1 :-

The Function type class is now used to define functions with
little syntactic overhead3. The following listing shows an expression
in the DSL utilising two user-defined functions:

fun _increment� (_x �x ⊕ lit 1)

:- fun _divide� (_(x, y)�x ⊘ y)

:- increment (divide (lit 38, lit 5))

2In this case a newtype is used instead of regular data declarations. newtypes are
special data types only consisting a single constructor with one field to which the type
is isomorphic. During compilation the constructor is completely removed resulting in
no overhead [Peyton Jones 2003, §4.2.3].
3The BlockArguments extension of GHC is used to reduce the number of brackets
that allows lambda’s to be an argument to a function without brackets or explicit
function application using $

First-Class Data Types in Shallow eDSLs using Metaprogramming IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

The interpreter only requires one instance of the Function class
that works for any argument type. In the implementation, the re-
sulting function g is simultaneously provided to the definition def.
Because the laziness of Haskell’s lazy let bindings, this results in a
fixed point calculation:

instance Function a Maybe where
fun def = let g :- m = def g in m

The given Printer type is not sufficient to implement the in-
stances for the Function class, it must be possible to generate fresh
function names. After extending the Printer type to contain some
sort of state to generate fresh function names and a MonadWriter
[String]4 to streamline the output, we define an instance for
every arity.

To illustrate this, the instance for unary functions is shown, all
other arities are implemented in similar fashion.

instance Function () Printer where ...

instance Function (Printer a) Printer where ...

fun def = freshLabel ≫= _f�
let g :- m = def $ _a0�const ⊥

<$> (tell [" f ", show f, " ("]
≫ a0 ≫ tell [") "])

in tell [" l e t f ", f, " a0 = "]
≫ g (const ⊥ <$> tell ["a0"])

≫ tell [" in "] ≫ m

instance Function (Printer a, Printer b) Printer where ...

Running the given printer on the example code shown before
produces roughly the following output, running the interpreter on
this code results in Just 8.

2.4 Data types
Lifting values from the host language to the DSL is possible using
the lit function as long as the type of the value has instances for
all the class constraints. Unfortunately, once lifted, it is not possible
to do anything with values of the user-defined data type other than
passing them around. It is not possible to construct new values
from expressions in the DSL, to deconstruct a value into the fields,
nor to test of which constructor the value is. Furthermore, while
in our language the only constraint is the automatically derivable
Show, in real-world languages the class constraints may be very
difficult to satisfy for complex types, for example serialisation to a
single stack cell in the case of a compiler.

As a consequence, for user-defined data types—such as a pro-
grammer-defined list type5—to become first-class citizens in the
DSL, language constructs for constructors, deconstructors and con-
structor predicates must be defined. Field selectors are also useful
functions for working with user-defined data types, they are not
considered for the sake of brevity but can be implemented using
the deconstructor functions. The constructs for the list type would
result in the following class definition:

class ListDSL v where

4
freshLabel :: Printer String

tell :: MonadWriter w m ⇒ w � m ()
5For example: data List a = Nil | Cons {hd :: a, tl :: List a}

−− constructors
nil :: v (List a)

cons :: v a � v (List a) � v (List a)

−− deconstructors
unNil :: v (List a) � v b � v b

unCons :: v (List a)

� (v a � v (List a) � v b) � v b

−− constructor predicates
isNil :: v (List a) � v Bool

isCons :: v (List a) � v Bool

Furthermore, instances for the DSL’s views need to be created.
For example, to use the interpreter, the following instance must
be available. Note that at first glance, it would feel natural to have
isNil and isCons return Nothing since we are in the Maybemonad.
However, this would fail the entire expression and the idea is that
the constructor test can be done from within the DSL.

instance ListDSL Maybe where
nil = Just Nil

cons hd tl = Cons <$> hd <∗> tl

unNil d f = d ≫= _Nil�f

unCons d f = d

≫= _(Cons hd tl)�f (Just hd) (Just tl)

isNil d = d ≫= _case6

Nil � Just True

_ � Just False

isCons d = d ≫= _case
Cons _ _ � Just True

Nil � Just False

Adding these classes and their corresponding instances is tedious
and results in boilerplate code. We therefore resort to metaprogram-
ming, and in particular Template Haskell [Sheard and Jones 2002]
to alleviate this burden.

3 TEMPLATE METAPROGRAMMING
Metaprogramming is a special flavour of programming where pro-
grams have the ability to treat and manipulate programs or pro-
gram fragments as data. There are several techniques to facilitate
metaprogramming, moreover it has been around for many years
now [Lilis and Savidis 2019]. Even though it has been around for
many years, it is considered complex [Sheard 2001].

Template Haskell is GHC’s de facto metaprogramming system,
implemented as a compiler extension togetherwith a library [Sheard
and Jones 2002][Team 2021, §6.13.1]. Readers already familiar with
Template Haskell can safely skip this section.

Template Haskell adds four main concepts to the language, na-
mely AST data types, splicing, quasiquotation and reification. With
this machinery, regular Haskell functions can be defined that are
called at compile time, inserting generated code into the AST. These
functions are monadic functions operating in the Q monad. The Q
monad facilitates failure, reification and fresh identifier generation
for hygienic macros [Kohlbecker et al. 1986]. Within the Q monad,

6_case is an abbreviation for _x�case x of ... when using GHC’s LambdaCase
extension.

IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

capturable and non-capturable identifiers can be generated using
the mkName and newName functions respectively. The Peter Parker
principle7 holds for the Q monad as well because it executes at
compile time and is very powerful. For example, it can subvert
module boundaries, thus accessing constructors that were hidden;
access the structure of abstract types; and it may cause side effects
during compilation because it is possible to call IO operations [Terei
et al. 2012]. To achieve the goal of embedding data types in a DSL
we refrain from using these unsafe features.

3.0.1 Data types. Firstly, for all of Haskell’s AST elements, data
types are provided that are mostly isomorphic to the actual data
types used in the compiler. With these data types, the entire syntax
of a Haskell program can be specified. Often, a data type is suffixed
with the context, e.g. there is a VarE and a VarP for a variable in
an expression or in a pattern respectively. To give an impression
of these data types, a selection of data types available in Template
Haskell is given below:
data Dec = FunD Name [Clause] | DataD Cxt Name ...

| SigD Name Type | ClassD Cxt Name | ...

data Clause = Clause [Pat] Body [Dec]

data Pat = LitP Lit | VarP Name | TupP [Pat]

| WildP | ListP [Pat] | ...

data Body = GuardedB [(Guard, Exp)] | NormalB Exp

data Guard = NormalG Exp | PatG [Stmt]

data Exp = VarE Name | LitE Lit | AppE Exp Exp

| TupE [Maybe Exp] | LamE [Pat] Exp | ...

data Lit = CharL Char | StringL String

| IntegerL Integer | ...

To ease creating AST data types in the Q monad, lowercase
variants of the constructors are available that lift the constructor to
the Q monad. For example, for the LamE constructor, the following
lamE function is available.
lamE :: [Q Pat] � Q Exp � Q Exp

lamE ps es = LamE <$> sequence ps <∗> es

3.0.2 Splicing. Special splicing syntax (_$(...)) marks functions
for compile-time execution. Other than that they always produce a
value of an AST data type, they are regular functions. Depending
on the context and location of the splice, the result type is either a
list of declarations, a type, an expression or a pattern. The result
of this function, when successful, is then spliced into the code and
treated as regular code by the compiler. Consequently, the code
that is generated may not be type safe, in which case the compiler
provides a type error on the generated code. The following listing
shows an example of a Template Haskell function generating on-
the-fly functions for arbitrary field selection in a tuple. When called
as _$(tsel 2 4) it expands at compile time to \\(_, _, f, _)�
f:

tsel :: Int � Int � Q Exp

tsel field total = do
f � newName " f "
lamE [tupP [if i == field then varP f else wildP

7With great power comes great responsibility.

| i�[0..total-1]]] (varE f)

3.0.3 Quasiquotation. Another key concept of Template Haskell
is Quasiquotation, the dual of splicing [Bawden 1999]. While it
is possible to construct entire programs using the provided data
types, it is a little cumbersome. Using Oxford brackets or single or
double apostrophes, verbatim Haskell code can be entered that is
converted automatically to the corresponding AST nodes easing the
creation of language constructs. Depending on the context, different
quasiquotes are used: •J...K or J𝑒 ...K for expressions •J𝑑...K for
declarations •J𝑝...K for patterns •J𝑡 ...K for types •'... for function
names •"... for type names

It is possible to escape the quasiquotes again by splicing. Vari-
ables defined within quasiquotes are always fresh—as if defined
with newName—but it is possible to capture identifiers using mkName.
For example, J\\x�xK translates to newName "x" ≫= \\x�lamE
[varP x] (varE x) and does not interfere with other xs already
defined.

3.0.4 Reification. Reification is the act of querying the compiler for
information about a certain name. For example, reifying a type name
results in information about the type and the corresponding AST
nodes of the type’s definition. This information can then be used to
generate code according to the structure of data types. Reification is
done using the reify :: Name � Q Info function. The Info type
is an ADT containing all the—known to the compiler—information
about the matching type: constructors, instances, etc.

4 METAPROGRAMMING FOR GENERATING
DSL FUNCTIONS

With the power of metaprogramming, we can generate the boiler-
plate code for our user-defined data types automatically at compile
time. To generate the code required for the DSL, we define the
genDSL function. The type belonging to the name passed as an ar-
gument to this function is made available for the DSL by generating
the typeDSL class and view instances. For the List type it is called
as: _$(genDSL "List).8

The genDSL function is a regular function—though Template
Haskell requires that it is defined in a separate module—that has
type: Name � Q [Dec], i.e. given a name, it produces a list of
declarations in the Q monad. The genDSL function first reifies the
name to retrieve the structural information. If the name matches a
type constructor containing a data type declaration, the structure
of the type—the type variables, the type name and information
about the constructors9—are passed to the genDSL' function. The
getConsName function filters out unsupported data types such as
GADTs and makes sure that every field has a name. For regular
ADTs, the adtFieldName function is used to generate a name for
the constructor based on the indices of the fields.10 From this
structure of the type, genDSL' generates a list of declarations con-
taining a class definition (Section 4.1), instances for the interpreter
(Section 4.2), and instances of the printer (Section 4.3) respectively.
genDSL :: Name � Q [Dec]

8" is used instead of ' to instruct the compiler to look up the information for List as
a type and not as a constructor.
9Defined as type VarBangType = (Name, Bang, Type) by Template Haskell.
10adtFieldName :: Name � Integer � Name

First-Class Data Types in Shallow eDSLs using Metaprogramming IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

genDSL name = reify name ≫= _case
TyConI (DataD cxt typeName tvs mkind

constructors derives)

� mapM getConsName constructors

≫= _d�genDSL' tvs typeName d

t � fail ("genDSL does not support : " ++ show t)

getConsName :: Con � Q (Name, [VarBangType])

getConsName (NormalC consName fs) = pure (consName,

[(adtFieldName consName i, b, t)

| (i, (b, t))�[0..] `zip` fs])

getConsName (RecC consName fs) = pure (consName, fs)

getConsName c

= fail ("genDSL does not support : " ++ show c)

genDSL' :: [TyVarBndr] � Name � [(Name, [VarBangType])]

� Q [Dec]

genDSL' typeVars typeName constructors = sequence

[mkClass, mkInterpreter, mkPrinter, ...]

where
(consNames, fields) = unzip constructors

...

4.1 Class generation
The function for generating the class definition is defined in the
where clause of the genDSL' function. Using the classD construc-
tor, a single type class is created with a single type variable v. The
classD function takes five arguments: (1) a context, i.e. the class
constraints, which is empty in this case (2) a name, generated from
the type name using the className function that simply appends
the text DSL (3) a list of type variables, in this case the only type
variable is the view on the DSL, i.e. v (4) functional dependencies,
empty in our case (5) a list of function declarations, i.e. the class
members, in this case it is a concatenation of the constructors, de-
constructors, and constructor predicates Depending on the required
information, either zipWith or map is used to apply the generation
function to all constructors.

mkClass :: Q Dec

mkClass = classD (cxt []) (className typeName) [PlainTV (

mkName "v")] []

(zipWith mkConstructor consNames fields

++ zipWith mkDeconstructor consNames fields

++ map mkPredicate consNames

)

In all class members, the view v plays a crucial role. Therefore, a
definition for v is accessible for all generation functions. Further-
more, the res type represents the result type, it is defined as the
type including all type variables. This result type is derived from
the type name and the list of type variables. In case of the List
type, res is defined as v (List a) and is available for as well:

v = varT (mkName "v")
res = v `appT` foldl appT (conT typeName)

(map getName typeVars)

where getName (PlainTV name) = varT name

getName (KindedTV name _) = varT name

4.1.1 Constructors. The constructor definitions are generated from
just the constructor names and the field information. All class
members are defined using the sigD constructor that represents a
function signature. The first argument is the name of the construc-
tor function, a lowercase variant of the actual constructor name
generated using the constructorName function. The second argu-
ment is the type of the function. A constructor 𝐶𝑘 of type 𝑇 where
𝑇 𝑡𝑣0 . . . 𝑡𝑣𝑛 = . . . | 𝐶𝑘 𝑎0 . . . 𝑎𝑚 | . . . is defined as a DSL function
𝑐𝑘 :: 𝑣 𝑎0 � . . . � 𝑣 𝑎𝑚 � 𝑣 (𝑇 𝑣0 . . . 𝑣𝑛). In the implementation,
first the view v is applied to all the field types. Then, the constructor
type is constructed by folding over the lifted field types with the
result type as the initial value using mkCFun.

mkConstructor :: Name � [VarBangType] � Q Dec

mkConstructor n fs

= sigD (constructorName n) (mkCFun fs res)

mkCFun :: [VarBangType] � Q Type � Q Type

mkCFun fs res = foldr (_x y�J𝑡 $x � $yK)
(map (_(_, _, t)�v `appT` pure t) fs)

4.1.2 Deconstructors. The deconstructor is generated similarly to
the constructor as the function for generating the constructor is the
second argument modulo change in the result type. A deconstructor
𝐶𝑘 of type 𝑇 is defined as a DSL function unCk :: 𝑣 (𝑇 𝑣0 . . . 𝑣𝑛) �
(𝑣 𝑎0 � . . . � 𝑣 𝑎𝑚 � 𝑣 𝑏) � 𝑣 𝑏. In the implementation, mkCFun
is reused to construct the type of the deconstructor as follows:

mkDeconstructor :: Name � [VarBangType] � Q Dec

mkDeconstructor n fs = sigD (deconstructorName n)

J𝑡 $res � $(mkCFun fs J𝑡 $v $bK) � $v $bK
where b = varT (mkName "b")

4.1.3 Constructor predicates. The last part of the class definition
are the constructor predicates, a function that checks whether the
provided value of type 𝑇 contains a value with constructor 𝐶𝑘 . A
constructor predicate for constructor 𝐶𝑘 of type 𝑇 is defined as
a DSL function isCk :: 𝑣 (𝑇 𝑣0 . . . 𝑣𝑛) � 𝑣 Bool. A constructor
predicate—name prefixed by is—is generated for all constructors.
They all have the same type:

mkPredicate :: Name � Q Dec

mkPredicate n = sigD (predicateName n)

J𝑡 $res � $v BoolK

4.2 Interpreter instance generation
Generating the interpreter for the DSL means generating the class
instance for the Interpreter data type using the instanceD func-
tion. The first argument of the instance is the context, this is
left empty. The second argument of the instance is the type, the
Interpreter data type applied to the class name. Finally, the class
function instances are generated using the information derived
from the structure of the type. The structure for generating the

IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

function instances is very similar to the class definition, only for
the function instances of the constructor predicates, the field infor-
mation is required as well as the constructor names.

mkInterpreter :: Q Dec

mkInterpreter = instanceD (cxt [])

J𝑡 $(conT (className typeName)) InterpreterK
(zipWith mkConstructor consNames fields

++ zipWith mkDeconstructor consNames fields

++ zipWith mkPredicate consNames fields)

where ...

4.2.1 Constructors. The interpreter is a view on the DSL that im-
mediately executes all operations in the Maybe monad. Therefore,
the constructor function can be implemented by lifting the actual
constructor to the Maybe type using sequential application. I.e. for
a constructor 𝐶𝑘 this results in the following constructor: ck a0
... am = pure Ck <∗> a0 <∗> ... <∗> am. To avoid acciden-

tal shadowing, fresh names for all the arguments are generated. The
ifx function is used as a shorthand for defining infix expressions11

mkConstructor :: Name � [VarBangType] � Q Dec

mkConstructor consName fs = do
fresh � sequence [newName "a" | _�fs]

fun (constructorName consName) (map varP fresh)

(foldl (ifx "<∗>") Jpure $(conE consName)K
(map varE fresh))

4.2.2 Deconstructors. In the case of a deconstructor a function
with two arguments is created: the object itself (f) and the function
doing something with the individual fields (d). To avoid accidental
shadowing first fresh names for the arguments and fields are gen-
erated. Then, a function is created with the two arguments. First
d is evaluated and bound to a host language function that decon-
structs the constructor and passes the fields to f. I.e. a deconstructor
function 𝐶𝑘 is defined as: unCk d f = d ≫= \\(Ck a0 .. am)�
f (pure a0) ... (pure am)).12

mkDeconstructor :: Name � [VarBangType] � Q Dec

mkDeconstructor consName fs = do
d � newName "d"
f � newName " f "
fresh � mapM (newName . nameBase . fst3) fs

fun (deconstructorName consName) [varP d, varP f]

J$(varE d) ≫= _($(match f))�$(fapp f fresh)K
where fapp f = foldl appE (varE f)

. map (_f�Jpure $(varE f)K)
match f = pure (ConP consName (map VarP f))

11
ifx :: String � Q Exp � Q Exp � Q Exp

ifx op a b = infixE (Just a) (varE (mkName op)) (Just b)
12The nameBase :: Name � String function from the Template Haskell library is
used to convert a name to a string.

4.2.3 Constructor predicates. Constructor predicates evaluate the
argument and make a case distinction on the result to determine
the constructor. To be able to generate a valid pattern in the case
distinction, the total number of fields must be known. To avoid
having to explicitly generate a fresh name for the first argument, a
lambda function is used. In general, the constructor selector for 𝐶𝑘
results in the following code isCk f = f ≫= \\case Ck _ ... _
� pure True; _ � pure False. Generating this code is done

with the following function:
mkPredicate :: Name � [(Var, Bang, Type)] � Q Dec

mkPredicate n fs = fun (predicateName n) []

J_x�x ≫= _case
$(conP n [wildP | _�fs]) � pure True

_ � pure FalseK

4.3 Pretty printer instance generation
Generating the printer happen analogously to the interpreter, a class
instance for the Printer data type using the instanceD function.
mkPrinter :: Q Dec

mkPrinter = instanceD (cxt []) J𝑡 $(conT (className

typeName)) PrinterK
(zipWith mkConstructor consNames fields

++ zipWith mkDeconstructor consNames fields

++ map mkPredicate consNames)

To be able to define a printer that is somewhat more powerful,
we provide instances for MonadWriter; add a state for fresh vari-
ables and a context; and define some helper functions the Printer
datatype. The printLit function is a variant of MonadWriters tell
that prints a literal string, but it can be of any type (it is a phantom
type anyway). printCons prints a constructor name followed by an
expression, it inserts parenthesis only when required depending on
the state. paren always prints parenthesis around the given printer.
>−> is a variant of the sequence operator ≫ from the Monad class,
it prints whitespace in between the arguments.
printLit :: String � Printer a

printCons :: String � Printer a � Printer a

paren :: Printer a � Printer a

(>−>) :: Printer a1 � Printer a2 � Printer a3

pl :: String � Q Exp

4.3.1 Constructors. For a constructor 𝐶𝑘 the printer is defined
as: ck a0 ... am = printCons "Ck" (printLit "" >−> a0 >−>
... >−> am). To generate the second argument to the printCons
function, a fold is used with printLit "" as the initial element
to account for constructors without any fields as well, e.g. Nil is
translated to nil = printCons "Nil" (printLit "").
mkConstructor :: Name � [VarBangType] � Q Dec

mkConstructor consName fs = do
fresh � sequence [newName " f " | _� fs]

fun (constructorName consName) (map varP fresh)

(pcons `appE` pargs fresh)

where pcons = JprintCons $(lift (nameBase consName))K
pargs fresh = foldl (ifx ">−> ") (pl " ")

First-Class Data Types in Shallow eDSLs using Metaprogramming IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

(map varE fresh)

4.3.2 Deconstructors. Printing the deconstructor for 𝐶𝑘 is defined
as:
unCk d f

= printLit "unCk d"
>−> paren (

printLit "_ (Ck" >−> printLit "a0 ... am" ≫
printLit ")� "

≫ f (printLit "a0") ... (printLit "am")
)

The implementation for this is a little elaborate and it heavily
uses the pl function, a helper function that translates a string literal
s to JprintLit _$(lift s)K, i.e. it lifts the printLit function to
the Template Haskell domain.
mkDeconstructor :: Name � [VarBangType] � Q Dec

mkDeconstructor consName fs = do
d � newName "d"
f � newName " f "
fresh � sequence [newName "a" | _�fs]

fun (deconstructorName consName) (map varP [d, f])

J $(pl (nameBase (deconstructorName consName)))

>−> $(pl (nameBase d))

>−> paren ($(pl ('\\':'(':nameBase consName))

>−> $lam ≫ printLit ")� "
≫ $(hoas f))K

where
lam = pl $ unwords [nameBase f | (f, _, _)�fs]

hoas f = foldl appE (varE f)

[pl (nameBase f) | (f, _, _)�fs]

4.3.3 Constructor predicates. For the printer, the constructor se-
lector for 𝐶𝑘 results in the following code isCk f = printLit "
isCk" >−> f.

mkPredicate :: Name � Q Dec

mkPredicate n = fun (predicateName n) []

J_x� $(pl $ nameBase $ predicateName n) >−> xK

5 PATTERN MATCHING
It is possible to construct and deconstruct values from other DSL
expressions, and to perform tests on the constructor but with a
clunky and unwieldy syntax. They have become first-class citizens
in a grotesque way. For example, given that we have some language
constructs to denote failure and conditionals,13 writing a list sum-
mation function in our DSL would be done as follows. For the sake
of the argument we take a little shortcut here and assume that the
interpretation of the DSL supports lazy evaluation by using the
host language as a metaprogramming language as well, allowing
us to use functions in the host language to construct expressions
in the DSL.

13

class Support v where
if' :: v Bool � v a � v a � v a

bottom :: String � v a

program :: (ListDSL v, Support v, ...) ⇒ v Int

program

= fun _sum�(_l� if'(isNil l)

(lit 0)

(unCons l (_hd tl�hd ⊕ sum tl)))

:- sum (cons (lit 38) (cons (lit 4) nil))

A similar Haskell implementation is much more elegant and
less cluttered because of the support for pattern matching. Pattern
matching offers a convenient syntax for doing deconstruction and
constructor tests at the same time.

sum :: List Int � Int

sum Nil = 0

sum (List hd tl) = hd + sum tl

main = sum (Cons 38 (Cons 4 Nil))

5.1 Custom quasiquoters
The syntax burden of eDSLs can be reduced using quasiquotation.
In Template Haskell, quasiquotation is a convenient way to create
Haskell language constructs by entering them verbatim using Ox-
ford brackets. However, it is also possible to create so-called custom
quasiquoters [Mainland 2007]. If the programmer writes down a
fragment of code between tagged Oxford brackets, the compiler
executes the associated quasiquoter functions at compile time. A
quasiquoter is a value of the following data type:

data QuasiQuoter = QuasiQuoter

{ quoteExp :: String � Q Exp

, quotePat :: String � Q Pat

, quoteType :: String � Q Type

, quoteDec :: String � Q Dec

}

The code between dsl brackets (J𝑑𝑠𝑙 ...K) is preprocessed by the
dsl quasiquoter. Because the functions are executed at compile time,
errors—thrown using the MonadFail instance of the Q monad—
in these functions result in compile time errors. The AST nodes
produced by the quasiquoter are inserted into the location and
checked as if they were written by the programmer.

To illustrate writing a custom quasiquoter, we show an imple-
mentation of a quasiquoter for binary literals. The bin quasiquoter
is only defined for expressions and parses subsequent zeros and
ones as a binary number and splices it back in the code as a regular
integer. Thus, J𝑏𝑖𝑛 101010K results in the literal integer expression
42. If an invalid character is used, a compile-time error is shown.
The quasiquoter is defined as follows:

bin :: QuasiQuoter
bin = QuasiQuoter { quoteExp = parseBin }

where
parseBin :: String � Q Exp

parseBin s = LitE . IntegerL <$> foldM bindigit 0 s

bindigit :: Integer � Char � Q Integer

bindigit acc '0' = pure (2 * acc)

IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

bindigit acc '1' = pure (2 * acc + 1)

bindigit acc c = fail (" invalid char : " ++ show c)

5.2 Quasiquotation for pattern matching
Custom quasiquoters allow the DSL user to enter fragments verba-
tim, bypassing the syntax of the host language. Pattern matching in
general is not suitable for a custom quasiquoter because it does not
really fit in one of the four syntactic categories for which custom
quasiquoter support is available. However, a concrete use of pattern
matching, interesting enough to be beneficial, but simple enough for
a demonstration is the simple case expression, a case expression that
does not contain nested patterns and is always exhaustive. They
correspond to multi-way conditional expressions and can thus be
converted to DSL constructs straightforwardly [Peyton Jones 1987,
§4.4].

In contrast to the binary literal quasiquoter example, we do not
create the parser by hand. The parser combinator library parsec
is used instead to ease the creation of the parser [Leijen and Mei-
jer 2001]. First the location of the quasiquoted code is retrieved
using the location function that operates in the Q monad. This
location is inserted in the parsec parser so that errors are localised
in the source code. Then, the expr parser is called that returns an
Exp in the Q monad. The expr parser uses parsec’s commodity
expression parser primitive buildExpressionParser. The result-
ing parser translates the string directly into Template Haskell’s
AST data types in the Q monad. The most interesting parser is the
parser for the case expression that is an alternative in the basic
expression parser basic. A case expression is parsed when a key-
word case is followed by an expression that is in turn followed
by a non-empty list of matches. A match is parsed when a pattern
(pat) is followed by an arrow and an expression. The results of
this parser are fed into the mkCase function that transforms the
case into an expression using DSL primitives such as conditionals,
deconstructors and constructor predicates. The above translates to
the following skeleton implementation:

expr :: Parser (Q Exp)

expr = buildExpressionParser [...] basic

where
basic :: Parser (Q Exp)

basic = ...

<|> mkCase <$ reserved " case " <∗> expr

<∗ reserved " of " <∗> many1 match

<|> ...

match :: Parser (Q Pat, Q Exp)

match = (,) <$> pat <∗ reserved "� " <∗> expr

pat :: Parser (Q Pat)

pat = conP <$> con <∗> many var

Case expressions are transformed into constructors, deconstruc-
tors and constructor predicates, e.g. case e1 of Cons hd tl �
e2; Nil � e3; is converted to:

if' (isList e1)

(unCons e1 (_hd tl�e2))

(if' (isNil e1)

(unNil e1 e3)

(bottom "Exhausted case "))

The mkCase (line 1) function transforms a case expression into
constructors, deconstructors and constructor predicates. Line 3 first
evaluates the patterns. Then the patterns and their expressions are
folded using the mkCase` function (line 5). While a case exhaustion
error is used as the initial value, this is never called since all case
expressions are exhaustive. For every case, code is generated that
checks whether the constructor used in the pattern matches the
constructor of the value using constructor predicates (line 11). If
the constructor matches, the deconstructor (line 12) is used to bind
all names to the correct identifiers and evaluate the expression. If
the constructor does not match, the continuation (_$rest) is used
(line 9).

1 mkCase :: Q Exp � [(Q Pat, Q Exp)] � Q Exp

2 mkCase name cases = do
3 pats � mapM fst cases

4 foldr (uncurry mkCase') Jbottom "Exhausted case "K
5 (zip pats (map snd cases))

6 where
7 mkCase' :: Pat � Q Exp � Q Exp � Q Exp

8 mkCase' (ConP cons fs) e rest

9 = Jif' $pred $then_ $restK
10 where
11 pred = varE (predicateName cons) `appE` name

12 then_ = J$(varE (deconstructorName cons))

13 $name $(lamE [pure f | f�fs] e)K

Finally, with this quasiquotation mechanism we can define our
list summation using a case expression. As a byproduct, syntactic
cruft such as the special symbols for the operators and calls to
lit can be removed as well resulting in the following summation
implementation:
program :: (ListDSL v, DSL v, ...) ⇒ v Int

program

= fun _sum�(_l� J𝑑𝑠𝑙 case l of
Cons hd tl � hd + sum tl

Nil � 0K)
:- sum (cons (lit 38) (cons (lit 4) nil))

6 RELATEDWORK
Generic or polytypic programming is a promising technique at
first glance for automating the generation of function implemen-
tations [Lämmel and Jones 2003]. However, while it is possible to
define a function that works on all first-order types, adding a new
function with a new name to the language is not possible. This does
not mean that generic programming is not useable for embedding
pattern matches. In generic programming, types are represented
as sums of products and using this representation it is possible to
define pattern matching functions.

For example, Rhiger showed a method for expressing statically
typed pattern matching using typed higher-order functions [Rhiger

First-Class Data Types in Shallow eDSLs using Metaprogramming IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

2009]. If not the host language but the DSL contains higher or-
der functions, the same technique could be applied to port pattern
matching to DSLs though using an explicit sums of products rep-
resentation. Atkey et al. describe embedding pattern matching in
a DSL by giving patterns an explicit representation in the DSL by
using pairs, sums and injections [Atkey et al. 2009, §3.3].

McDonell et al. extends on this idea, resulting in a very similar
but different solution to ours [McDonell et al. 2021]. They used the
technique that Atkey et al. showed and applied it to deep embedding
using the concrete syntax of the host language. The scaffolding—
e.g. generating the pairs, sums and injections—for embedding is
automated using generics but the required pattern synonyms are
generated using Template Haskell. The key difference to our ap-
proach is that we specialise the implementation for each of the
backends instead of providing a general implementation of data
type handling operations. Furthermore, our implementation does
not require a generic function to trace all constructors, resulting in
problems with (mutual) recursion.

Young et al. added pattern matching to a deeply embedded DSL
using a compiler plugin [Young et al. 2021]. This plugin imple-
ments an externalise :: a � E a function that allows lifting all
machinery required for pattern matching automatically from the
host language to the DSL. Under the hood, this function translates
the pattern match to constructors, deconstructors, and constructor
predicates. The main difference with this work is that it requires
a compiler plugin while our metaprogramming approach works
on any compiler supporting a metaprogramming system similar to
Template Haskell.

6.1 Related work on Template Haskell
Metaprogramming in general is a very broad research topic and
has been around for years already. We therefore do not claim an
exhaustive overview of related work on all aspects of metapro-
gramming. However, we have tried to present most research on
metaprogramming in Template Haskell. Czarnecki et al. provide
a more detailed comparison of different metaprogramming tech-
niques. They compare staged interpreters, metaprogramming and
templating by comparing MetaOCaml, Template Haskell and C++
templates [Czarnecki et al. 2004]. Template Haskell has been used
to implement related work. They all differ slightly in functionality
from our domain and can be divided into several categories.

6.1.1 Generating extra code. Using Template Haskell or other me-
taprogramming systems it is possible to add extra code to your
program. The original Template Haskell paper showed that it is
possible to create variadic functions such as printf using Template
Haskell that would be almost impossible to define without [Sheard
and Jones 2002]. Hammond et al. used Template Haskell to generate
parallel programming skeletons [Hammond et al. 2003]. In practise,
this means that the programmer selects a skeleton and, at compile
time, the code is massaged to suit the pattern and information about
the environment is inlined for optimisation.

Polak et al. implemented automatic GUI generation using Tem-
plate Haskell [Polak and Jarosz 2006]. Duregård et al. wrote a parser
generator using Template Haskell and the custom quasiquoting fa-
cilities [Duregård and Jansson 2011]. From a specification of the
grammar, given in verbatim using a custom quasiquoter, a parser

is generated at compile time. Shioda et al. used metaprogramming
in the D programming language to create a DSL toolkit [Shioda
et al. 2014]. They also programmatically generate parsers and a
backend for either compiling or interpreting the IR. Blanchette et
al. use Template Haskell to simplify the development of Liquid
Haskell proofs [Blanchette et al. 2022]. Folmer et al. used Template
Haskell to synthesize C_aSH [Baaij 2015] abstract syntax trees to
be processed [Folmer et al. 2022]. In similar fashion, Materzok used
Template Haskell to translate YieldFSM programs to C_aSH [Mater-
zok 2022].

6.1.2 Optimisation. Besides generating code, it is also possible
to analyse existing code and perform optimisations. Yet, this is
dangerous territory because unwantedly the semantics of the opti-
mised program may be slightly different from the original program.
For example, Lynagh implemented various optimisations in Tem-
plate Haskell such as automatic loop unrolling [Lynagh 2003]. The
compile-time executed functions analyse the recursive function and
unroll the recursion to a fixed depth to trade execution speed for pro-
gram space. Also, O’Donnell embedded Hydra, a hardware descrip-
tion language, in Haskell utilising Template Haskell [O’Donnell
2004]. Using intensional analysis of the AST, it detects cycles by
labelling nodes automatically so that it can generate netlists. The
authors mention that alternatively this could have be done using
a monad but this hampers equational reasoning greatly, which is
a key property of Hydra. Finally, Viera et al. present a way of em-
bedding attribute grammars in Haskell in a staged fashion [Viera
et al. 2018]. Checking several aspects of the grammar is done at
compile time using Template Haskell while other safety checks are
performed at runtime.

6.1.3 Compiler extension. Sometimes, expressing certain function-
alities in the host languages requires a lot of boilerplate, syntax
wrestling, or other pains. Metaprogramming can relieve some of
this stress by performing this translation to core constructs automat-
ically. For example, implementing generic—or polytypic— functions
in the compiler is a major effort. Norell et al. used Template Haskell
to implement the machinery required to implement generic func-
tions at compile time [Norell and Jansson 2004]. Adams et al. also ex-
plores implementing generic programming using Template Haskell
to speed things up considerably compared to regular generic pro-
gramming [Adams and DuBuisson 2012]. Clifton et al. use Template
Haskell with a custom quasiquoter to offer skeletons for workflows
and embed foreign function interfaces in a DSL [Clifton-Everest
et al. 2014]. Eisenberg et al. showed that it is possible to program-
matically lift some functions from the function domain to the type
domain at compile time, i.e. type families [Eisenberg and Stolarek
2014]. Furthermore, Seefried et al. argued that it is difficult to do
some optimisations in eDSLs and that metaprogramming can be
of use there [Seefried et al. 2004]. They use Template Haskell to
change all types to unboxed types, unroll loops to a certain depth
and replace some expressions by equivalent more efficient ones.
Torrano et al. showed that it is possible to use Template Haskell
to perform a strictness analysis and perform let-to-case transla-
tion [Torrano and Segura 2005]. Both applications are examples
of compiler extensions that can be implemented using Template
Haskell. Another example of such a compiler extension is shown
by Gill et al. [Gill 2009]. They created a meta level DSL to describe

IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

rewrite rules on Haskell syntax that are applied on the source code
at compile time.

6.1.4 Quasiquotation. By means of quasiquotation, the host lan-
guage syntax that usually seeps through the embedding can be
hidden. The original Template Haskell quasiquotation paper [Main-
land 2007] shows how this can be done for regular expressions, not
only resulting in a nicer syntax but syntax errors are also lifted to
compile time instead of run time. Also, Kariotis et al. used Template
Haskell to automatically construct monad stacks without having to
resort to the monad transformers library which requires advanced
type system extensions [Kariotis et al. 2008].

Najd uses the compile time to be able to do normalisation for a
DSL, dubbing it QDSLs [Najd et al. 2016]. They utilise the quasi-
quation facilities of Template Haskell to convert Haskell DSL code
to constructs in the DSL, applying optimisations such as eliminat-
ing lambda abstractions and function applications along the way.
Egi et al. extended Haskell to support non-free data type pattern
matching—i.e. data type with no standard form, e.g. sets, graphs—
using Template Haskell [Egi et al. 2022]. Using quasiquotation, they
make a complicated embedding of non-linear pattern matching
available through a simple lens.

6.1.5 Typed Template Haskell. Typed Template Haskell is a very
recent extension/alternative to normal Template Haskell [Pickering
et al. 2019; Xie et al. 2022]. Where in Template Haskell you can
manipulate arbitrary parts of the syntax tree, add top-level splices
of data types, definitions and functions, in Typed Template Haskell
the programmer can only splice expressions but the abstract syn-
tax tree fragments representing the expressions are well-typed by
construction instead of untyped.

Pickering et al. implemented staged compilation for the generics-
sop [de Vries and Löh 2014] generics library to improve the effi-
ciency of the code using Typed Template Haskell [Pickering et al.
2020]. Willis et al. used Typed Template Haskell to remove the
overhead of parsing combinators [Willis et al. 2020].

7 DISCUSSION
This paper aims to be twofold, first, it shows how to inherit data
types in a DSL as first-class citizens by generating the boilerplate
at compile time using Template Haskell. Secondly, it introduces the
reader to Template Haskell by giving an overview of the literature in
which Template Haskell is used and provides a gentle introduction
by explaining the case study.

Functional programming languages are especially suitable for
embedding DSLs but adding user-defined data types is still an issue.
The tagless-final style of embedding offers great modularity, extensi-
bility and flexibility. However, user-defined data types are awkward
to handle because the built-in operations on them—construction, de-
construction and constructor tests—are not inherited from the host
language. We showed how to create a Template Haskell function
that will splice the required class definitions and view instances.
The code dataset also contains an implementation for defining field

selectors and provides an implementation for a compiler.14 Further-
more, by writing a custom quasiquoter, pattern matches in natural
syntax can be automatically converted to the internal representa-
tion of the DSL, thus removing the syntax burden of the facilities.
The use of a custom quasiquoter does require the DSL programmer
to write a parser for their DSL, i.e. the parser is not inherited from
the host language as is often the case in an embedded DSL. How-
ever, by making use of modern parser combinator libraries, this
overhead is limited and errors are already caught at compilation.

The fact that Template Haskell is deemed unsafe or even scary,
and that the learning curve is often perceived makes people hesi-
tant to employ this powerful and useful tool. We found that, when
familiar with the intricacies, implementing the non-trivial function-
ality went quite well. The error messages are reasonable and using
quasiquotation, not a lot of AST data types have to be created.

7.1 Future work
For future work, it would be interesting to see how generating
boilerplate for user-defined data types translates from shallow em-
bedding to deep embedding. In deep embedding, the language con-
structs are expressed as data types in the host language. Adding new
constructs, e.g. constructors, deconstructors, and constructor tests,
for the user-defined data type therefore requires extending the data
type. Techniques such as data types à la carte [Swierstra 2008] and
open data types [Löh and Hinze 2006] show that it is possible to
extend data types orthogonally but whether metaprogramming can
still readily be used is something that needs to be researched. It may
also be possible to implemented (parts) of the boilerplate generation
using Typed Template Haskell (See Section 6.1.5) to achieve more
confidence in the type correctness of the implementation.

Another venue of research is to try to find the limits of this tech-
nique regarding richer data type definitions. It would be interesting
to see whether it is possible to apply the technique on data types
with existentially quantified type variables or full-fledged gener-
alised ADTs [Hinze 2003]. It is not possible to straightforwardly lift
the deconstructors to type classes because existentially quantified
type variables will escape. Rank-2 polymorphism offers tools to
define the types in such a way that this is not the case anymore.
However, implementing compiling views on the DSL is compli-
cated because it would require inventing values of an existentially
quantified type variable to satisfy the type system which is difficult.

Finally, having to write a parser for the DSL is extra work. Future
research could determine whether it is possible to generate this
using Template Haskell as well.

ACKNOWLEDGMENTS
This research is partly funded by the Royal Netherlands Navy. Fur-
thermore, we would like to thank the anonymous reviewers for
their invaluable comments.

REFERENCES
Michael Adams and Thomas DuBuisson. 2012. Template Your Boilerplate: Using

Template Haskell for Efficient Generic Programming. In Proceedings of the 2012
Haskell Symposium (Haskell ’12). Association for Computing Machinery, New York,

14Lubbers, M.; Koopman, P.; Plasmeijer, R. (2022): Code for the paper First-Class Data
Types in Shallow Embedded Domain-Specific Languages using Metaprogramming.
Zenodo. 10.5281/zenodo.6416747.

https://doi.org/10.5281/zenodo.6416747

First-Class Data Types in Shallow eDSLs using Metaprogramming IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark

NY, USA, 13–24. https://doi.org/10.1145/2364506.2364509 event-place: Copenhagen,
Denmark.

Robert Atkey, Sam Lindley, and Jeremy Yallop. 2009. Unembedding Domain-Specific
Languages. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell (Haskell
’09). Association for Computing Machinery, New York, NY, USA, 37–48. https:
//doi.org/10.1145/1596638.1596644 event-place: Edinburgh, Scotland.

Christiaan Baaij. 2015. Digital circuit in C_aSH: functional specifications and type-
directed synthesis. PhD Thesis. University of Twente, Netherlands. https://doi.org/
10.3990/1.9789036538039 ISBN: 978-90-365-3803-9.

Alan Bawden. 1999. Quasiquotation in Lisp. In Olivier Danvy, Ed., University of
Aarhus, Dept. of Computer Science (BRICS Notes Series, Vol. NS-99-1). BRICS, Aarhus,
Denmark, 88–99. https://doi.org/10.1.1.22.1290

Henry Blanchette, Niki Vazou, and Leonidas Lampropoulos. 2022. Liquid Proof Macros.
In Proceedings of the 15th ACM SIGPLAN International Haskell Symposium (Haskell
2022). Association for Computing Machinery, New York, NY, USA, 27–38. https:
//doi.org/10.1145/3546189.3549921 event-place: Ljubljana, Slovenia.

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2009. Finally tagless, par-
tially evaluated: Tagless staged interpreters for simpler typed languages. Jour-
nal of Functional Programming 19, 5 (2009), 509–543. https://doi.org/10.1017/
S0956796809007205 Publisher: Cambridge University Press.

Adam Chlipala. 2008. Parametric Higher-Order Abstract Syntax for Mechanized
Semantics. In Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’08). Association for Computing Machinery, New
York, NY, USA, 143–156. https://doi.org/10.1145/1411204.1411226 event-place:
Victoria, BC, Canada.

Robert Clifton-Everest, Trevor McDonell, Manuel Chakravarty, and Gabriele Keller.
2014. Embedding Foreign Code. In Practical Aspects of Declarative Languages,
Matthew Flatt and Hai-Feng Guo (Eds.). Springer International Publishing, Cham,
136–151.

Krzysztof Czarnecki, John O’Donnell, Jörg Striegnitz, and Walid Taha. 2004. DSL
Implementation in MetaOCaml, Template Haskell, and C++. In Domain-Specific
Program Generation: International Seminar, Dagstuhl Castle, Germany, March 23-28,
2003. Revised Papers, Christian Lengauer, Don Batory, Charles Consel, and Martin
Odersky (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 51–72. https:
//doi.org/10.1007/978-3-540-25935-0_4

Edsko de Vries and Andres Löh. 2014. True Sums of Products. In Proceedings of the
10th ACM SIGPLAN Workshop on Generic Programming (WGP ’14). Association
for Computing Machinery, New York, NY, USA, 83–94. https://doi.org/10.1145/
2633628.2633634 event-place: Gothenburg, Sweden.

Jonas Duregård and Patrik Jansson. 2011. Embedded Parser Generators. In Proceedings
of the 4th ACM Symposium on Haskell (Haskell ’11). Association for Computing
Machinery, New York, NY, USA, 107–117. https://doi.org/10.1145/2034675.2034689
event-place: Tokyo, Japan.

Satoshi Egi, Akira Kawata, Mayuko Kori, and Hiromi Ogawa. 2022. Embedding Non-
linear Pattern Matching with Backtracking for Non-free Data Types into Haskell.
New Generation Computing 40, 2 (July 2022), 481–506. https://doi.org/10.1007/
s00354-022-00177-z

Richard Eisenberg and Jan Stolarek. 2014. Promoting Functions to Type Families in
Haskell. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell (Haskell
’14). Association for Computing Machinery, New York, NY, USA, 95–106. https:
//doi.org/10.1145/2633357.2633361 event-place: Gothenburg, Sweden.

Conal Elliott, Sigbjørn Finne, and Oege de Moor. 2003. Compiling embedded languages.
Journal of Functional Programming 13, 3 (2003), 455–481. https://doi.org/10.1017/
S0956796802004574 Publisher: Cambridge University Press.

Hendrik Folmer, Robert de Groote, and Marco Bekooij. 2022. High-Level Synthesis
of Digital Circuits from Template Haskell and SDF-AP. In Embedded Computer
Systems: Architectures, Modeling, and Simulation, Alex Orailoglu, Marc Reichenbach,
and Matthias Jung (Eds.). Springer International Publishing, Cham, 3–27.

AndyGill. 2009. AHaskell Hosted DSL forWriting Transformation Systems. InDomain-
Specific Languages, Walid Mohamed Taha (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 285–309.

Kevin Hammond, Jost Berthold, and Rita Loogen. 2003. Automatic Skeletons in Tem-
plate Haskell. Parallel Processing Letters 13, 03 (2003), 413–424. https://doi.org/10.
1142/S0129626403001380 _eprint: https://doi.org/10.1142/S0129626403001380.

Ralf Hinze. 2003. Fun With Phantom Types. In The Fun of Programming, Jeremy
Gibbons and Oege de Moor (Eds.). Bloomsbury Publishing, Palgrave, 245–262.

Pericles Kariotis, Adam Procter, and William Harrison. 2008. Making Monads First-
Class with Template Haskell. In Proceedings of the First ACM SIGPLAN Symposium
on Haskell (Haskell ’08). Association for Computing Machinery, New York, NY,
USA, 99–110. https://doi.org/10.1145/1411286.1411300 event-place: Victoria, BC,
Canada.

Oleg Kiselyov. 2012. Typed Tagless Final Interpreters. In Generic and Indexed Program-
ming: International Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised
Lectures, Jeremy Gibbons (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
130–174. https://doi.org/10.1007/978-3-642-32202-0_3

Eugene Kohlbecker, Daniel Friedman, Matthias Felleisen, and Bruce Duba. 1986. Hy-
gienic Macro Expansion. In Proceedings of the 1986 ACM Conference on LISP and
Functional Programming (LFP ’86). Association for ComputingMachinery, New York,

NY, USA, 151–161. https://doi.org/10.1145/319838.319859 event-place: Cambridge,
Massachusetts, USA.

Daan Leijen and Erik Meijer. 2000. Domain Specific Embedded Compilers. In Proceed-
ings of the 2nd Conference on Domain-Specific Languages (DSL ’99). Association
for Computing Machinery, New York, NY, USA, 109–122. https://doi.org/10.1145/
331960.331977 event-place: Austin, Texas, USA.

Daan Leijen and Erik Meijer. 2001. Parsec: Direct Style Monadic Parser Combinators For
The Real World. Technical Report UU-CS-2001-27. Universiteit Utrecht, Utrecht. 22
pages.

Yannis Lilis and Anthony Savidis. 2019. A Survey of Metaprogramming Languages.
ACM Comput. Surv. 52, 6 (Oct. 2019). https://doi.org/10.1145/3354584 Place: New
York, NY, USA Publisher: Association for Computing Machinery.

Ian Lynagh. 2003. Unrolling and Simplifying Expressions with Template Haskell.
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/

Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A Practical
Design Pattern for Generic Programming. In Proceedings of the 2003 ACM SIGPLAN
International Workshop on Types in Languages Design and Implementation (TLDI
’03). Association for Computing Machinery, New York, NY, USA, 26–37. https:
//doi.org/10.1145/604174.604179 event-place: New Orleans, Louisiana, USA.

Andres Löh and Ralf Hinze. 2006. Open Data Types and Open Functions. In Proceedings
of the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP ’06). Association for Computing Machinery, New
York, NY, USA, 133–144. https://doi.org/10.1145/1140335.1140352 event-place:
Venice, Italy.

Geoffrey Mainland. 2007. Why It’s Nice to Be Quoted: Quasiquoting for Haskell.
In Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop (Haskell ’07).
Association for Computing Machinery, New York, NY, USA, 73–82. https://doi.
org/10.1145/1291201.1291211 event-place: Freiburg, Germany.

Marek Materzok. 2022. Generating Circuits with Generators. Proc. ACM Program.
Lang. 6, ICFP (Aug. 2022). https://doi.org/10.1145/3549821 Place: New York, NY,
USA Publisher: Association for Computing Machinery.

Trevor McDonell, Joshua Meredith, and Gabriele Keller. 2021. Embedded Pattern
Matching. CoRR abs/2108.13114 (2021). https://arxiv.org/abs/2108.13114 arXiv:
2108.13114.

Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016. Everything
Old is New Again: Quoted Domain-Specific Languages. In Proceedings of the 2016
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (PEPM
’16). Association for Computing Machinery, New York, NY, USA, 25–36. https:
//doi.org/10.1145/2847538.2847541 event-place: St. Petersburg, FL, USA.

Ulf Norell and Patrik Jansson. 2004. Prototyping Generic Programming in Template
Haskell. In Mathematics of Program Construction, Dexter Kozen (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 314–333.

John O’Donnell. 2004. Embedding a Hardware Description Language in Template
Haskell. In Domain-Specific Program Generation: International Seminar, Dagstuhl
Castle, Germany, March 23-28, 2003. Revised Papers, Christian Lengauer, Don Batory,
Charles Consel, and Martin Odersky (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 143–164. https://doi.org/10.1007/978-3-540-25935-0_9

Simon Peyton Jones. 1987. The Implementation of Functional Programming Lan-
guages. Prentice Hall, Hertfordshire. https://www.microsoft.com/en-us/research/
publication/the-implementation-of-functional-programming-languages/

Simon Peyton Jones (Ed.). 2003. Haskell 98 language and libraries: the revised report.
Cambridge University Press, Cambridge.

Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language Design and Imple-
mentation (PLDI ’88). Association for Computing Machinery, New York, NY, USA,
199–208. https://doi.org/10.1145/53990.54010 event-place: Atlanta, Georgia, USA.

Matthew Pickering, Andres Löh, and Nicolas Wu. 2020. Staged Sums of Products. In
Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell (Haskell
2020). Association for Computing Machinery, New York, NY, USA, 122–135. https:
//doi.org/10.1145/3406088.3409021 event-place: Virtual Event, USA.

Matthew Pickering, Nicolas Wu, and Csongor Kiss. 2019. Multi-Stage Programs in
Context. In Proceedings of the 12th ACM SIGPLAN International Symposium on
Haskell (Haskell 2019). Association for Computing Machinery, New York, NY, USA,
71–84. https://doi.org/10.1145/3331545.3342597 event-place: Berlin, Germany.

Gracjan Polak and Janusz Jarosz. 2006. Automatic Graphical User Interface Form
Generation Using Template Haskell. In Revised Selected Papers from the Seventh
Symposium on Trends in Functional Programming, TFP 2006, Nottingham, United
Kingdom, 19-21 April 2006 (Trends in Functional Programming, Vol. 7), Henrik Nilsson
(Ed.). Intellect, Bristol, UK, 1–11. event-place: Nottingham, UK.

Morten Rhiger. 2009. Type-safe pattern combinators. Journal of Functional Program-
ming 19, 2 (2009), 145–156. https://doi.org/10.1017/S0956796808007089 Publisher:
Cambridge University Press.

Sean Seefried, Manuel Chakravarty, and Gabriele Keller. 2004. Optimising Embedded
DSLs Using Template Haskell. In Generative Programming and Component Engi-
neering, Gabor Karsai and Eelco Visser (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 186–205.

Tim Sheard. 2001. Accomplishments and Research Challenges in Meta-programming.
In Semantics, Applications, and Implementation of Program Generation, Walid Taha

https://doi.org/10.1145/2364506.2364509
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1.1.22.1290
https://doi.org/10.1145/3546189.3549921
https://doi.org/10.1145/3546189.3549921
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1007/978-3-540-25935-0_4
https://doi.org/10.1007/978-3-540-25935-0_4
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2034675.2034689
https://doi.org/10.1007/s00354-022-00177-z
https://doi.org/10.1007/s00354-022-00177-z
https://doi.org/10.1145/2633357.2633361
https://doi.org/10.1145/2633357.2633361
https://doi.org/10.1017/S0956796802004574
https://doi.org/10.1017/S0956796802004574
https://doi.org/10.1142/S0129626403001380
https://doi.org/10.1142/S0129626403001380
https://doi.org/10.1145/1411286.1411300
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/331960.331977
https://doi.org/10.1145/331960.331977
https://doi.org/10.1145/3354584
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/1140335.1140352
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/3549821
https://arxiv.org/abs/2108.13114
https://doi.org/10.1145/2847538.2847541
https://doi.org/10.1145/2847538.2847541
https://doi.org/10.1007/978-3-540-25935-0_9
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/3406088.3409021
https://doi.org/10.1145/3406088.3409021
https://doi.org/10.1145/3331545.3342597
https://doi.org/10.1017/S0956796808007089

IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 2–44.
Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for Haskell. In

Proceedings of the 2002 ACM SIGPLANWorkshop on Haskell (Haskell ’02). Association
for Computing Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/
581690.581691 event-place: Pittsburgh, Pennsylvania.

Masato Shioda, Hideya Iwasaki, and Shigeyuki Sato. 2014. LibDSL: A Library for Devel-
oping Embedded Domain Specific Languages in d via Template Metaprogramming.
In Proceedings of the 2014 International Conference on Generative Programming: Con-
cepts and Experiences (GPCE 2014). Association for ComputingMachinery, New York,
NY, USA, 63–72. https://doi.org/10.1145/2658761.2658770 event-place: Västerås,
Sweden.

Wouter Swierstra. 2008. Data types à la carte. Journal of functional programming 18, 4
(2008), 423–436. https://doi.org/10.1017/S0956796808006758

GHC Team. 2021. GHC User’s Guide Documentation. https://downloads.haskell.org/
~ghc/latest/docs/users_guide.pdf

David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. 2012. Safe
Haskell. In Proceedings of the 2012 Haskell Symposium (Haskell ’12). Association
for Computing Machinery, New York, NY, USA, 137–148. https://doi.org/10.1145/
2364506.2364524 event-place: Copenhagen, Denmark.

Carmen Torrano and Clara Segura. 2005. Strictness Analysis and let-to-case Transfor-
mation using Template Haskell. In Revised Selected Papers from the Sixth Symposium
on Trends in Functional Programming, TFP 2005, Tallinn, Estonia, 23-24 September

2005 (Trends in Functional Programming, Vol. 6), Marko van Eekelen (Ed.). Intellect,
Bristol, UK, 429–442. event-place: Talinn, Estonia.

Marcos Viera, Florent Balestrieri, and Alberto Pardo. 2018. A Staged Embedding of
Attribute Grammars in Haskell. In Proceedings of the 30th Symposium on Implementa-
tion and Application of Functional Languages (IFL 2018). Association for Computing
Machinery, New York, NY, USA, 95–106. https://doi.org/10.1145/3310232.3310235
event-place: Lowell, MA, USA.

Jamie Willis, Nicolas Wu, and Matthew Pickering. 2020. Staged Selective Parser
Combinators. Proc. ACM Program. Lang. 4, ICFP (Aug. 2020). https://doi.org/10.
1145/3409002 Place: New York, NY, USA Publisher: Association for Computing
Machinery.

Ningning Xie, Matthew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng
Wang. 2022. Staging with Class: A Specification for Typed Template Haskell. Proc.
ACM Program. Lang. 6, POPL (Jan. 2022). https://doi.org/10.1145/3498723 Place:
New York, NY, USA Publisher: Association for Computing Machinery.

David Young, Mark Grebe, and Andy Gill. 2021. On Adding Pattern Matching to
Haskell-Based Deeply Embedded Domain Specific Languages. In Practical Aspects
of Declarative Languages: 23rd International Symposium, PADL 2021, Copenhagen,
Denmark, January 18-19, 2021, Proceedings. Springer-Verlag, Berlin, Heidelberg,
20–36. https://doi.org/10.1007/978-3-030-67438-0_2 event-place: Copenhagen,
Denmark.

https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/2658761.2658770
https://doi.org/10.1017/S0956796808006758
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
https://doi.org/10.1145/2364506.2364524
https://doi.org/10.1145/2364506.2364524
https://doi.org/10.1145/3310232.3310235
https://doi.org/10.1145/3409002
https://doi.org/10.1145/3409002
https://doi.org/10.1145/3498723
https://doi.org/10.1007/978-3-030-67438-0_2

	Abstract
	1 Introduction
	1.1 Contributions of the paper

	2 Tagless-final embedding
	2.1 Adding language constructs
	2.2 Adding semantics
	2.3 Functions
	2.4 Data types

	3 Template metaprogramming
	4 Metaprogramming for generating DSL functions
	4.1 Class generation
	4.2 Interpreter instance generation
	4.3 Pretty printer instance generation

	5 Pattern matching
	5.1 Custom quasiquoters
	5.2 Quasiquotation for pattern matching

	6 Related work
	6.1 Related work on Template Haskell

	7 Discussion
	7.1 Future work

	Acknowledgments
	References

