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Abstract

This thesis introduces an innovative way to connect small Internet of Things devices
to high level Task Oriented Programming implementations languages. The existing

class-based shallowly Embedded Domain Specific Language called mTask by
Koopman et al. — written in Clean — is extended with a new view to allow

compilation of Internet of Things Tasks on the fly and send them to devices as
interpretable bytecode. All introduced functionality adheres to the Task Oriented

Programming philosophy where common concepts such as Shared Data Sources and
Task-combinators are available at ease.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Internet of Things
Internet of Things (IoT) technology is emerging rapidly. It offers myriads of solutions and is
transforming the way people interact with technology.

The term IoT was coined around 1999 to describe Radio-Frequency Identification (RFID)
devices and the communication between them. After a small slumber of the term, it resurfaced
recently and has changed definition slightly. In the current day and age, IoT encompasses all
small devices that communicate with each other and — most of all — with the world. It has
been estimated that there will be around 30 billion IoT devices online in 2020. Even today, IoT
devices are already in everyone’s household in the form of smart electricity meters, smart fridges,
smartphones, smart watches. These devices are often equipped with sensors, Global Navigation
Satellite System (GNSS) modules1 and actuators [1]. With these new technologies, information
can be tracked accurately using little power, bandwidth and money. Moreover, IoT technology is
coming into healthcare as well [2]. For example, for a few euros a consumer ready fitness tracker
watch can be bought that tracks heartbeat and respiration levels.

The architecture of IoT systems is often divided into layers. A very popular division is the
four layer architecture but there are also proponents of a five layer structure. The first layer
of the four layer architecture is the sensing layer. This layer contains the actual sensing and
acting hardware. In a smart electricity meter, this layer would contains the sensors detecting
the current drawn. There are myriads of device available to use in this layer and they can be
programmed using a variety of different low level programming languages such as C++, C but
also higher level languages such as Python and LUA. The second layer of IoT is the networking
layer and is responsible for connecting the first layer with the outer world. In a smart electricity
meter, this would be the GSM modem connecting the meter to a server. Existing networking
techniques — such as WiFi and GSM — are used to convey IoT information but there are also
specialized communication techniques devised for IoT such as ZigBee, LoRa and Bluetooth Low
Energy. The third layer is called the service layer. This layer is responsible for all the servicing
and business rules surrounding the application. It provides Application Programming Interfaces
(APIs) and interfaces to, and storage of the data. Finally, the fourth layer is the application
layer. This final layer provides the applications that the user can use to interact with the IoT

1e.g. the American Global Positioning System (GPS) or the Russian Global Navigation Satellite System
(GLONASS).
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devices and their data. In a smart electricity meter, this layer would be the app that can be
used to monitor the electricity consumption.

The separation of IoT in layers is a difficulty when developing IoT applications. All layers
use different paradigms, languages and architectures which leads to isolated logic which makes it
difficult to integrate. Rolling out changes to the system is also complicated since reprogramming
microcontrollers in the field is very expensive. Even the changing a few parameters on a device
requires often a full reprogram.

1.1.2 Task Oriented Programming
The Task Oriented Programming (TOP) paradigm and the corresponding iTasks implementa-
tion offer a high abstraction level for real world workflow tasks [3]. These workflow tasks can be
described through an Embedded Domain Specific Language (EDSL) hosted in the purely func-
tional programming language Clean. Tasks are the basic building blocks of the language and
they resemble actual workflow tasks. For the specification, the system will generate a multi-user
web application. This web service can be accessed through a browser and is used to complete
these Tasks. Familiar workflow patterns like sequential, parallel and conditional Tasks chaining
can be modelled in the language.

ITasks has shown to be useful in many fields of operation such as incident management [4].
ITasks is highly type driven and is built on generic functions that generate functionality for the
given types. This results in the programmer having to do very little implementation work on
details such as user interfaces. It is possible to change the derived functions and adapt them to
needs.

1.2 Problem statement
Tasks in the iTasks system are modelled after real life workflow tasks but the modelling is
applied on a high level. Therefore, it is difficult to connect iTasks-Tasks to real world tasks and
allow them to interact. A lot of the actual tasks could very well be performed by IoT devices.
Nevertheless, adding such devices to the current system is difficult to say the least as it was not
designed to cope with these devices.

In the current system such adapters connecting devices to iTasks — in principle — can be
written in two ways.

First, an adapter for a specific device can be written as a Shared Data Sources (SDSs)2. SDSs
can interact with the world and thus with hardware, allowing communication with any type of
device. However, this requires a tailor-made SDS for every specific device and functionality and
does not allow logic to be changed. Once a device is programmed to serve as an SDS, it has to
behave like that forever. Thus, this solution is not suitable for systems that can send Tasks to
the device dynamically.

The second method uses the novel contribution to iTasks by Oortgiese et al. They lifted
iTasks from a single server model to a distributed server architecture [5]. As a proof of concept,
an android app has been created that runs an entire iTasks core and is able to receive Tasks from
a different server and execute them. While android often runs on small Acorn RISC Machine
(ARM) devices, they are a lot more powerful than the average IoT microcontroller. The system
is suitable for dynamically sending Tasks but running the entire iTasks core on a microcontroller
is not feasible. Even if it would be possible, this technique would still not be suitable because a
lot of communication overhead is needed to transfer the Tasks. IoT devices are often connected

2Similar as to resources such as time are available in the current iTasks implementation.
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to the server through Low Power Low Bandwidth which is unsuitable for transferring a lot of
data.

The novel system that has been devised bridges the gap between the aforementioned solu-
tions for adding IoT to iTasks. The system consists of updates to the mTask-EDSL [6], a new
communication protocol, device application and an iTasks server application. The system sup-
ports devices as small as Arduino microcontrollers [7] and operates via the same paradigms and
patterns as regular Tasks in the TOP paradigm. Devices in the mTask-system can run small
imperative programs written in the EDSL and have access to SDSs. Tasks are sent to the device
at runtime, avoiding recompilation and thus write cycles on the program memory. This solution
extends the reach of iTasks and allows closer resemblance of Tasks to actual tasks. Moreover, it
tries to solve some integration problems in IoT by allowing all components to be programmed
from one source.

1.3 Document structure
The structure of this thesis is as follows.

Chapter 1 contains the problem statement, motivation, related work and the structure of the
document. Chapter 2 introduces the reader to the basics of TOP and iTasks. Chapter 3 discusses
the pros and cons of different embedding methods to create EDSL. Chapter 4 shows the existing
mTask-EDSL which is extended upon in this dissertation. Chapter 5 gives an overview of the
proposed system in the broadest sense. Chapter 6 describes the added view and functionality for
the mTask-EDSL that were added and used in the system. Chapter 7 shows the implementation
and considerations for entire system. It covers the client software running on the device and the
server written in iTasks. Chapter 8 concludes by answering the research questions and discusses
future research. Appendix A shows the concrete protocol used for communicating between the
server and client. Appendix B shows the concrete interface for the devices.

Some conventions have been kept throughout the document. Text written using the Teletype
font indicates code and is often referring to section of a listing. Emphasized text is used for
proper nouns and words that have an unexpected meaning. Small caps is used for branded
acronyms. When the word Tasks is emphasized and capitalized, it refers to the task-entities from
either the mTask or the iTasks system.

The complete source code of this thesis can be found in the following git repository:
https://git.martlubbers.net/msc-thesis1617.git

The complete source code of the mTask-system can be found in the following git repository:
https://git.martlubbers.net/mTask.git

1.4 Related work
Similar research has been conducted on the subject. For example, microcontrollers such as the
Arduino can be remotely controlled very directly using the Firmata-protocol3. This protocol is
designed to allow control of the peripherals — such as sensors and actuators — directly through
commands sent via a communication channel such as a serial port. This allows very fine grained
control but with the cost of excessive communication overhead since no code is executed on the
device itself, only the peripherals are queried. A Haskell implementation of the protocol is also
available4. The hardware requirements for running a Firmata client are very low. However, the

3“firmata/protocol: Documentation of the Firmata protocol.” (https://github.com/firmata/protocol). [Ac-
cessed: 23-May-2017].

4“hArduino by LeventErkok.” ( https://leventerkok.github.io/hArduino). [Accessed: 23-May-2017].

https://git.martlubbers.net/msc-thesis1617.git
https://git.martlubbers.net/mTask.git
https://github.com/firmata/protocol
https://leventerkok.github.io/hArduino
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communication requirements are high and therefore it is not suitable for IoT applications that
operate through specialized IoT networks which often only support low bandwidth.

Clean has a history of interpretation and there is a lot of research happening on the inter-
mediate language SAPL. SAPL is a purely functional intermediate language that is designed
to be interpreted. It has interpreters written in C++ [8] and Javascript [9]. Compiler backends
exist for and Clean and Haskell which compile the respective code to SAPL [10]. The SAPL
language is still a functional language and therefore requires big stacks and heaps to operate
and is therefore not directly suitable for devices with little RAM such as the Arduino Uno which
only boasts 2K of RAM. It might be possible to compile the SAPL code into efficient machine
language or C but then the system would lose its dynamic properties since the microcontroller
then would have to be reprogrammed every time a new Task is sent to the device.

EDSLs have often been used to generate C code for microcontroller environments. This
work uses parts of the existing mTask-EDSL which generates C code to run a TOP-like system
on microcontrollers [11] [6]. Again, this requires a reprogramming cycle every time the Task-
specification is changed. Hence, the EDSL is used but the backend is not suitable for the purpose
of dynamic IoT solutions.

Another EDSL designed to generate low-level high-assurance programs is called Ivory and
uses Haskell as a host language [12]. The language uses the Haskell type-system to make unsafe
languages type safe. For example, Ivory has been used in the automotive industry to program
parts of an autopilot [13] [14]. Ivory’s syntax is deeply embedded but the type system is shallowly
embedded. This requires several Haskell extensions that offer dependent type constructions. The
process of compiling an Ivory program happens in two stages. The embedded code is transformed
into an Abstract Syntax Tree (AST) that is sent to a chosen backend. The technique used in the
novel system using the mTask-EDSL is different, in the new system, the EDSL is transformed
directly into functions. There is no intermediate AST. Moreover, Ivory generates static programs
and thus it is necessary to reprogram the devices when they need to be repurposed. It would be
interesting to explore the possibilities of writing the client software in an EDSL as well.

Not all IoT devices run solely compiled code. The popular ESP8266 powered NodeMCU is
able to run interpreted LUA code. Moreover, there is a variation on Python called micropython
that is suitable for running on microcontrollers. However, the overhead of the interpreter for such
rich languages often results into limitations on the program size. It would not be possible to
repurpose a device with IoT because implementing this extensibility in the interpreted language
leaves no room for the actual programs. Also, some devices only have 2K of ram, which is not
enough for this.
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Chapter 2

Task Oriented Programming

2.1 iTasks

TOP is a novel programming paradigm implemented as iTasks [15] in the pure lazy functional
language Clean [16]. iTasks is an EDSL to model workflow tasks in the broadest sense. A Task
is just a function that — given some state — returns the observable TaskValue. The TaskValue
of a Task can have different states. Not all state transitions are possible as shown in Figure 2.1.
Once a value is stable it can never become unstable again. Stability is often reached by pressing
a confirmation button. Tasks yielding a constant value are immediately stable.

A simple iTasks example illustrating the route to stability of a Task in which the user has to
enter a full name is shown in Listing 2.1. The code is accompanied by screenshots showing the
user interface in Figure 2.2a, 2.2b and 2.2c. The TaskValue of the Task is in the first image in the
NoValue state, the second image does not have all the fields filled in and therefore the TaskValue
remains NoValue. In the third image all fields are entered and the TaskValue transitions to the
Unstable state. When the user presses Continue the value becomes Stable and cannot be changed
any further.

Figure 2.1: The states of a TaskValue

:: Name = { firstname :: String
, lastname :: String
}

derive class iTask Name

enterInformation :: String [EnterOption m] -> (Task m) | iTask m

enterName :: Task Name
enterName = enterInformation "Enter your name" []

Listing 2.1: An example Task for entering a name
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(a) Initial interface (b) Incomplete entrance (c) Complete entry

Figure 2.2: Example of a generated user interface

For a type to be suitable, it must have instances for a collection of generic functions that
is captured in the class iTask. Basic types have specialization instances for these functions and
show an interface accordingly. Derived interfaces can be modified with decoration operators or
specializations can be created.

2.2 Combinators
Tasks in iTasks can be combined using so called Task-combinators. Combinators describe rela-
tions between Tasks. There are only two basic types of combinators; parallel and sequence. All
other combinators are derived from the basic combinators. Type signatures of simplified versions
of the basic combinators and their derivations are given in Listing 2.2
//Step combinator
(>>=) infixl 1 :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b
(>>∗) infixl 1 :: (Task a) [TaskCont a (Task b)] -> Task b | iTask a & iTask b
:: TaskCont a b

= OnValue ((TaskValue a) -> Maybe b)
| OnAction Action ((TaskValue a) -> Maybe b)
| ∃ e: OnException (e -> b) & iTask e
| OnAllExceptions (String -> b)

:: Action = Action String

//Parallel combinators
(-||-) infixr 3 :: (Task a) (Task a) -> Task a | iTask a
(||-) infixr 3 :: (Task a) (Task b) -> Task b | iTask a & iTask b
(-||) infixl 3 :: (Task a) (Task b) -> Task a | iTask a & iTask b
(-&&-) infixr 4 :: (Task a) (Task b) -> Task (a,b) | iTask a & iTask b

Listing 2.2: Task-combinators

Sequence: The implementation for the sequence combinator is called the step (>>∗). This
combinator runs the left-hand Task and starts the right-hand side when a certain predicate holds.
Predicates can be propositions about the TaskValue, user actions from within the web browser or
a thrown exception. The familiar bind-combinator is an example of a sequence combinator. This
combinator runs the left-hand side and continues to the right-hand Task if there is an UnStable
value and the user presses continue or when the value is Stable. The combinator could have
been implemented as follows:
(>>=) infixl 1 :: (Task a) (a -> (Task b)) -> (Task b) | iTask a & iTask b
(>>=) ta f = ta >>∗ [OnAction "Continue" onValue, OnValue onStable]

where
onValue (Value a _) = Just (f a)
onValue _ = Nothing

onStable (Value a True) = Just (f a)
onStable _ = Nothing



2.3. SHARED DATA SOURCES 7

Parallel: The parallel combinator allows for concurrent Tasks. The Tasks combined with
these operators will appear at the same time in the web browser of the user and the results are
combined as the type dictates. All parallel combinators used are derived from the basic parallel
combinator that is very complex and only used internally.

2.3 Shared Data Sources
SDSs are an abstraction over resources that are available in the world or in the iTasks system.
The shared data can be a file on disk, the system time, a random integer or just some data stored
in memory. The actual SDS is just a record containing functions on how to read and write the
source. In these functions the ∗IWorld — which in turn contains the real ∗World — is available.
Accessing the outside world is required for interacting with it and thus the functions can access
files on disk, raw memory, other SDSs and hardware.

The basic operations for SDSs are get, set and update. The signatures for these functions
are shown in Listing 2.3. By default, all SDSs are files containing a JavaScript Object Notation
(JSON) encoded version of the object and thus are persistent between restarts of the program.
Library functions for shares residing in memory are available as well. The three main operations
on shares are atomic in the sense that during reading no other Tasks are executed. The system
provides useful functions to transform, map and combine SDSs using combinators. The system
also provides functionality to inspect the value of an SDS and act upon a change. Tasks waiting
on an SDS to change are notified when needed. This results in low resource usage because Tasks
are never constantly inspecting SDS values but are notified.
:: RWShared p r w = ...
:: ReadWriteShared r w :== RWShared () r w
:: ROShared p r :== RWShared p () r
:: ReadOnlyShared r :== ROShared () r

:: Shared r :== ReadWriteShared r r

get :: (ReadWriteShared r w) -> Task r | iTask r
set :: w (ReadWriteShared r w) -> Task w | iTask w
upd :: (r -> w) (ReadWriteShared r w) -> Task w | iTask r & iTask w

sharedStore :: String a -> Shared a | JSONEncode{|∗|}, JSONDecode{|∗|}

Listing 2.3: SDS functions

2.4 Parametric Lenses
SDSs can contain complex data structures such as lists, trees and even resources in the outside
world. Sometimes, an update action only updates a part of the resource. When this happens,
all waiting Tasks looking at the resource are notified of the update. However, it may be the
case that Tasks were only looking at parts of the structure that was not updated. To solve this
problem, parametric lenses were introduced [17].

Parametric lenses add a type variable to the SDS. This type variable is fixed to the void type
(i.e. ()) in the given functions. When an SDS executes a write operation, it also provides the
system with a notification predicate. This notification predicate is a function p -> Bool where p
is the parametric lens type. This allows programmers to create a big SDS, and have Tasks only
look at parts of the big SDS. This technique is used in the current system in memory shares.
The IWorld contains a map that is accessible through an SDS. While all data is stored in the
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map, only Tasks looking at a specific entry are notified when the structure is updated. The type
of the parametric lens is the key in the map.

Functionality for setting parameters is available in the system. The most important functions
are the sdsFocus and the sdsLens function. These functions are listed in Listing 2.4. sdsFocus
allows the programmer to fix a parametric lens value. sdsLens is a kind of mapReadWrite including
access to the parametric lens value. This allows the creation of, for example, SDSs that only
read and write to parts of the original SDS.
sdsFocus :: p (RWShared p r w) -> RWShared p` r w | iTask p

:: SDSNotifyPred p :== p -> Bool

:: SDSLensRead p r rs = SDSRead (p -> rs -> MaybeError TaskException r)
| SDSReadConst (p -> r)

:: SDSLensWrite p w rs ws = SDSWrite (p -> rs -> w -> MaybeError TaskException (Maybe ws))
| SDSWriteConst (p -> w -> MaybeError TaskException (Maybe ws))

:: SDSLensNotify p w rs = SDSNotify (p -> rs -> w -> SDSNotifyPred p)
| SDSNotifyConst (p -> w -> SDSNotifyPred p)

sdsLens :: String (p -> ps) (SDSLensRead p r rs) (SDSLensWrite p w rs ws) (SDSLensNotify p w rs)
(RWShared ps rs ws) -> RWShared p r w | iTask ps

Listing 2.4: Parametric lens functions
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Chapter 3

Embedded Domain Specific
Languages

An EDSL is a language embedded in a host language. EDSLs can have one or more backends or
views. Commonly used views are pretty printing, compiling, simulating, verifying and proving
the program. There are several techniques available for creating EDSLs. They all have their
own advantages and disadvantages in terms of extendability, typedness and view support. In the
following subsections each of the main techniques are briefly explained.

3.1 Deep Embedding
A deep EDSL is a language represented as an Algebraic Datatype (ADT). Views are functions
that transform something to the datatype or the other way around. As an example, take the
simple arithmetic EDSL shown in Listing 3.1.
:: DSL

= LitI Int
| LitB Bool
| Var String
| Plus DSL DSL
| Minus DSL DSL
| And DSL DSL
| Eq DSL

Listing 3.1: A minimal deep EDSL

Deep embedding has the advantage that it is easy to build and views are easy to add. To the
downside, the expressions created with this language are not type-safe. In the given language
it is possible to create an expression such as Plus (LitI 4) (LitB True) that adds a boolean to
an integer. Evermore so, extending the ADT is easy and convenient but extending the views
accordingly is tedious and has to be done individually for all views.

The first downside of this type of EDSL can be overcome by using Generalized Algebraic
Data types (GADTs) [18]. Listing 3.2 shows the same language, but type-safe with a GADT.
GADTs are not supported in the current version of Clean and therefore the syntax is hypothetical.
However, it has been shown that GADTs can be simulated using bimaps or projection pairs [19].
Unfortunately the lack of extendability remains a problem. If a language construct is added, no
compile time guarantee is given that all views support it.
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:: DSL a
= LitI Int -> DSL Int
| LitB Bool -> DSL Bool
| ∃ e: Var String -> DSL e
| Plus (DSL Int) (DSL Int) -> DSL Int
| Minus (DSL Int) (DSL Int) -> DSL Int
| And (DSL Bool) (DSL Bool) -> DSL Bool
| ∃ e: Eq (DSL e) (DSL e) -> DSL Bool & == e

Listing 3.2: A minimal deep EDSL using GADTs

3.2 Shallow Embedding
In a shallow EDSL all language constructs are expressed as functions in the host language.
An evaluator view for the example language then can be implemented as the code shown in
Listing 3.3. Note that much of the internals of the language can be hidden using monads.
:: Env = ... // Some environment
:: DSL a = DSL (Env -> a)

Lit :: a -> DSL a
Lit x = λe -> x

Var :: String -> DSL Int
Var i = λe -> retrEnv e i

Plus :: (DSL Int) (DSL Int) -> DSL Int
Plus x y = λe -> x e + y e

...

Eq :: (DSL a) (DSL a) -> DSL Bool | == a
Eq x y = λe -> x e + y e

Listing 3.3: A minimal shallow EDSL

The advantage of shallowly embedding a language in a host language is its extendability. It is
very easy to add functionality and compile time checks of the host language guarantee whether or
not the functionality is available when used. Moreover, the language is type safe as it is directly
typed in the host language.

The downside of this method is extending the language with views. It is nearly impossible
to add views to a shallowly embedded language. The only way of achieving this is by decorating
the datatype for the EDSL with all the information for all the views. This will mean that every
component will have to implement all views rendering it slow for multiple views and complex to
implement.

3.3 Class Based Shallow Embedding
The third type of embedding is called class-based shallow embedding and has the advantages of
both shallow and deep embedding [20]. In class-based shallow embedding the language constructs
are defined as type classes. This language is shown with the new method in Listing 3.4.

This type of embedding inherits the ease of adding views from shallow embedding. A view
is just a different data type implementing one or more of the type classes as shown in the
aforementioned Listing where an evaluator and a pretty printer are implemented.
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Just as with GADTs, type safety is guaranteed in deep embedding. Type constraints are
enforced through phantom types. One can add as many phantom types as necessary. Lastly,
extensions can be added easily, just as in shallow embedding. When an extension is made in an
existing class, all views must be updated accordingly to prevent possible runtime errors. When an
extension is added in a new class, this problem does not arise and views can choose to implement
only parts of the collection of classes.

In contrast to deep embedding, it is very well possible to have multiple views applied on the
same expression. This is also shown in the following listing.
:: Env = ... // Some environment
:: Evaluator a = Evaluator (Env -> a)
:: PrettyPrinter a = PP String

class intArith where
lit :: t -> v t | toString t
add :: (v t) (v t) -> (v t) | + t
minus :: (v t) (v t) -> (v t) | - t

class boolArith where
and :: (v Bool) (v Bool) -> (v Bool)
eq :: (v t) (v t) -> (v Bool) | == t

instance intArith Evaluator where
lit x = Evaluator λe->x
add x y = Evaluator ...

instance intArith PrettyPrinter where
lit x = PP $ toString x
add x y = PP $ x +++ "+" +++ y
...

...

Start :: (PP String, Bool)
Start = (print e0, eval e0)
where

e0 :: a Bool | intArith, boolArith a
e0 = eq (lit 42) (lit 21 +. lit 21)

print (PP p) = p
eval (Evaluator e) env = e env

Listing 3.4: A minimal class based shallow EDSL
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Chapter 4

The mTask-EDSL

The mTask-EDSL was created by Koopman et al. and supports several views such as an iTasks
simulation and a C-code generator. The EDSL was designed to generate a ready-to-compile
TOP-like program for microcontrollers such as the Arduino [6][11].

The mTask-EDSL is a shallowly embedded class based EDSL and therefore it is very suitable
to have a new backend that partly implements the classes given. The following sections show
the details of the EDSL that is used in this extension. The parts of the EDSL that are not used
will not be discussed and the details of those parts can be found in the cited literature.

A view for the mTask-EDSL is a type with two free type variables1 that implements some of
the classes given. The types do not have to be present as fields in the view and can, and will most
often, be exclusively phantom types. Thus, views are of the form: :: v t r = .... The first type
variable will be the type of the view. The second type variable will be the type of the EDSL-
expression and the third type variable represents the role of the expression. Currently the role
of the expressions form a hierarchy. The three roles and their hierarchy are shown in Listing 4.1.
This implies that everything is a statement, only an Upd and an Expr are expressions. The Upd
restriction describes updatable expressions such as General-Purpose Input/Output (GPIO) pins
and SDSs. The roles are used to constrain certain classes. For example, without the roles for
Upd. Assignment would be possible to a non-assignable expression such as a literal integer.
:: Upd = Upd
:: Expr = Expr
:: Stmt = Stmt

class isExpr a :: a -> Int
instance isExpr Upd
instance isExpr Expr

Listing 4.1: Expression role hierarchy

4.1 Expressions
Expressions in the mTask-EDSL are divided into two types, namely boolean expressions and
arithmetic expressions. The class of arithmetic language constructs also contains the function
lit that lifts a host-language value into the EDSL domain. All standard arithmetic functions are
included in the EDSL but are omitted in the example for brevity. Moreover, the class restrictions

1kind ∗->∗->∗.
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are only shown in the first functions and are omitted in subsequent functions. Both the boolean
expression and arithmetic expression classes are shown in Listing 4.2.
class arith v where

lit :: t -> v t Expr
(+.) infixl 6 :: (v t p) (v t q) -> v t Expr | +, zero t & isExpr p & isExpr q
(-.) infixl 6 :: (v t p) (v t q) -> v t Expr | -, zero t & ...
...

class boolExpr v where
Not :: (v Bool p) -> v Bool Expr | ...
(&.) infixr 3 :: (v Bool p) (v Bool q) -> v Bool Expr | ...
...
(==.) infix 4 :: (v a p) (v a q) -> v Bool Expr | ==, toCode a & ...

Listing 4.2: Basic classes for expressions

4.2 Control flow
Looping of Tasks happens because Tasks are executed after waiting a specified amount of time or
when they are launched by another Task or even themselves. Therefore there is no need for loop
control flow functionality such as while or for constructions. The main control flow operators
are the sequence operator and the if statement. Both are shown in Listing 4.3. The first class of
If statements describes the regular if statement. The expressions given can have any role. The
functional dependency on s determines the return type of the statement. The listing includes
examples of implementations that illustrate this dependency. A special If statement — only
used for statements — is also added under the name IF, of which the ? is a conditional statement
to execute.

The sequence operator is straightforward and its only function is to tie two expressions
together. The left expression is executed first, followed by the right expression.
class IF v where

IF :: (v Bool p) (v t q) (v s r) -> v () Stmt | ...
(?) infix 1 :: (v Bool p) (v t q) -> v () Stmt | ...

class seq v where
(:.) infixr 0 :: (v t p) (v u q) -> v u Stmt | ...

Listing 4.3: Control flow operators

4.3 Input/Output
Values can be assigned to all expressions that have an Upd role. Examples of such expressions are
SDSs and GPIO pins. Moreover, class extensions can be created for specific peripherals such as
built-in LEDs. The classes facilitating this are shown in Listing 4.4. In this way the assignment
is the same for every assignable entity.
:: DigitalPin = D0 | D1 | D2 | D3 | D4 | D5 |D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13
:: AnalogPin = A0 | A1 | A2 | A3 | A4 | A5
:: UserLED = LED1 | LED2 | LED3

class dIO v where dIO :: DigitalPin -> v Bool Upd
class aIO v where aIO :: AnalogPin -> v Int Upd
class analogRead v where

analogRead :: AnalogPin -> v Int Expr
analogWrite :: AnalogPin (v Int p) -> v Int Expr
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class digitalRead v where
digitalRead :: DigitalPin -> v Bin Expr
digitalWrite :: DigitalPin (v Bool p) -> v Int Expr

:: UserLED = LED1 | LED2 | LED3
class userLed v where

ledOn :: (v UserLED q) -> (v () Stmt)
ledOff :: (v UserLED q) -> (v () Stmt)

class assign v where
(=.) infixr 2 :: (v t Upd) (v t p) -> v t Expr | ...

Listing 4.4: Input/Output classes

One way of storing data in mTask-Tasks is using SDSs. SDSs serve as global variables in
mTask and maintain their value across executions. SDSs can be used by multiple Tasks and
can be used to share data. The classes associated with SDSs are listed in Listing 4.5. The Main
type is introduced to box an mTask and make it recognizable by the type system by separating
programs and decorations such as SDSs. The type signature is complex and uses infix type
constructors and therefore, an implementation example is also given.
:: In a b = In infix 0 a b
:: Main a = {main :: a}

class sds v where
sds :: ((v t Upd) -> In t (Main (v c s))) -> (Main (v c s)) | ...

sdsExample :: Main (v Int Stmt)
sdsExample = sds λx.0 In

{main= x =. x +. lit 42 }

Listing 4.5: SDSs in mTask

4.4 Class Extensions
In the Arduino ecosystem, shields are available to plug into the microcontroller and add function-
ality. These shields range from Bluetooth, WiFi, Ethernet, LoRa, LCD screens and much more.
Often the functionality available in these shields is housed in a C++ class. This functionality is
ported using little work to mTask by just creating a corresponding class with the same functions.
As an example, Listing 4.6 shows parts of the Liquid Crystal Display (LCD) class as an mTask
class functions and as Listing 4.7 shown the corresponding Arduino class functions.
:: LCD = ...

class lcd v where
begin :: (v LCD Expr) (v Int p) (v Int q) -> v () Expr
LCD :: Int Int [DigitalPin] ((v LCD Expr) -> Main (v b q)) -> Main (v b q)
...
scrollLeft :: (v LCD Expr) -> v () Expr
scrollRight :: (v LCD Expr) -> v () Expr
...

Listing 4.6: Adding the LCD to the mTask language

class LiquidCrystal {
public :

void begin( uint8_t cols , uint8_t rows);
...
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void scrollDisplayLeft ();
void scrollDisplayRight ();
...

}

Listing 4.7: Functions from the Arduino LCD library

4.5 Scheduling Strategy
The C-backend of the mTask-system has an engine that is generated alongside the code for
the Tasks. This engine will execute the mTask-Tasks according to certain rules and execution
strategies. mTask-Tasks do not behave like functions but more like iTasks-Tasks. An mTask
is queued when either its timer runs out or when it is launched by another mTask. When an
mTask is queued it does not block the execution and it will return immediately while the actual
Task will be executed anytime in the future.

The iTasks-backend simulates the C-backend and thus uses the same scheduling strategy.
This engine expressed in pseudocode is listed as Algorithm 4.1. All the Tasks are inspected on
their waiting time. When the waiting time has not passed; the delta is subtracted and the Task
gets pushed to the end of the queue. When the waiting has surpassed they are executed. When
an mTask opts to queue another mTask it can just append it to the queue.

Data: queue queue, time t, tp

t← now();
begin

while true do
tp ← t;
t← now();
if notEmpty(queue) then

task ← queue.pop();
task.wait ← task.wait −(t− tp);
if task.wait > t0 then

queue.append(task);
else

run task(task);
end

end
end

end
Algorithm 4.1: Engine pseudocode for the C- and iTasks-view

To achieve this in the EDSL a Task class is added that work in a similar fashion as the
sds class. This class is listed in Listing 4.8. Tasks can have an argument and always have to
specify a delay or waiting time. The type signature of the mtask is complex and therefore an
example is given. The aforementioned Listing shows a simple specification containing one Task
that increments a value indefinitely every one seconds.
class mtask v a where

task :: (((v delay r) a->v MTask Expr)->In (a->v u p) (Main (v t q))) -> Main (v t q) | ...

count = task λcount = (λn.count (lit 1000) (n +. lit 1)) In
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{main = count (lit 1000) (lit 0)}

Listing 4.8: The classes for defining Tasks

4.6 Example mTask
Some example mTask-Tasks — using almost all of their functionality — are shown in Listing 4.9.
The blink mTask show the classic Arduino blinking LED application that blinks a certain LED
every second. The thermostat expression will enable a digital pin powering a cooling fan when the
analog pin representing a temperature sensor is too high. thermostat̀ shows the same expression
but now using the assignment style GPIO technique. The thermostat example also shows that
it is not necessary to run everything as a task. The main program code can also just consist of
the contents of the root main itself. Finally a thermostat example is shown that also displays the
temperature on its LCD while regulating the temperature.
a0 = aIO A0
d0 = dIO D0

blink = task λblink.(λx.
IF (x ==. lit True) (ledOn led) (ledOff led) :.
blink (lit 1000) (Not x)

In {main=blink (lit 1000) True}

thermostat = {main = digitalWrite D0 (analogRead A0 >. lit 50) }

thermostat̀ = {main = d0 =. a0 > lit 50 }

thermostat̀ ` = task λth.(λlcd.
d0 =. a0 > lit 50 :.
print lcd a0 :.
th (lit 1000) lim ) In

LCD 16 12 [] λlcd.{main = th (lit 1000) lim }

Listing 4.9: Some example mTask-Tasks



18 CHAPTER 4. THE MTASK-EDSL



19

Chapter 5

System Overview

A system has been researched and built and will be described in the following chapters. This
novel system provides a bridge between to gap present in the current system explained in the
introduction. It provides a framework to offer functionality for an iTasks server to outsource
Tasks to IoT-devices without needing to recompile the code. The Tasks targeted at IoT devices
are compiled at runtime to bytecode which is sent to the device for interpretation.

The following terms will be used throughout the following chapters:

• Device, Client
These terms are used interchangeably and denote the actual device connected to the system.
This can be a real device such as a microcontroller but it can also just be a program on
the same machine as the server functioning as a client.

• Server, iTasks-System
This is the actual executable serving the iTasks application. The system contains Tasks
taking care of the communication with the clients and infrastructure to manage the clients.

• System
The system describes the complete ecosystem, containing both the server and the clients
including the communication between them.

• Engine
The runtime system of the client is called the engine. This program handles communicating
with the server and runs the interpreter for the Tasks on the client.

5.1 EDSL for IoT Tasks
Not all Tasks are suitable to run on an IoT-device and therefore an EDSL is used to offer a
constrained language that expresses Tasks for the new system. The mTask-EDSL shown in
Chapter 4 provides the language to create imperative programs that are suitable to run on
microcontrollers. The EDSL’s main view is a C code generator who’s code compiles to Arduino
compatible microcontrollers. The big downside of this approach is the stiffness of the system.
Once the code has been generated and the microcontroller has been programmed, nothing can be
changed to it anymore. IoT-devices often have a limited amount of write cycles on their program
memory available and therefore it is very expensive to keep recompiling and reprogramming the
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chips. To solve this problem, a new view is proposed for the mTask-EDSL which compiles the
expressions not to C-code, but to a bytecode format which is interpetable and thus the need for
reprogramming is removed. To achieve this, several classes have been added to the mTask-EDSL.
Not all of the functionality of the mTask language is needed or not implemented.

The functionality and implementation added to the mTask-EDSL is shown in Chapter 6.

5.2 System Overview
The existing C-backend for the mTask-EDSL generates a self-contained iTasks-like TOP system
for microcontrollers. The added view for the mTask-EDSL does not result in a self-contained
system but compiles the expressions to bytecode representing a single Task. The device and
the server communicate using the Leader/Follower principle1. Only the server can initiate a
connection with a device and only the server can produce and send Tasks to the device. Concepts
such as SDSs are available on the device and are the main use of communication between the
client and the server.

Chapter 7 elaborates on the considerations and implementation of the system.

1Also known as Master/Slave
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Chapter 6

Extending the mTask EDSL

The Tasks suitable for a client are called mTask-Task and are written in the aforementioned
mTask-EDSL. Some functionality of the original mTask-EDSL will not be used in this system.
Conversely, some functionality needed was not available in the existing EDSL. Due to the nature
of class based shallow embedding this obstacle is easy to solve. A type — housing the EDSL
— does not have to implement all the available classes. Moreover, classes can be added at will
without interfering with the existing views.

6.1 Task Scheduling Strategy
The current mTask engine for devices does not support Tasks in the sense that the C-view does.
Tasks used with the C-view are a main program that executes code and launches Tasks. It
was also possible to just have a main program. The current mTask-system only supports main
programs which are the Tasks in their entirety. However, this results in a problem. Tasks can
not call other Tasks nor themselves. Therefore, execution strategies have been added. Sending a
Task always goes together with choosing a scheduling strategy. This strategy can be one of the
following three strategies:

• OneShot
The OneShot strategy consists of executing the Task only once. In IoT applications, often
the status of a peripheral or system has to be queried only once on the request of the user.
For example in a thermostat, the temperature is logged every 30 minutes. However, the
user might want to know the temperature at that exact moment, and then they can just
send a OneShot Task probing the temperature. After execution, the Task will be removed
from the memory of the client.

• OnInterval Int
OnInterval is a execution strategy that executes the Task in the given number of millisec-
onds. This strategy is very useful for logging measurements on an interval. Moreover,
the strategy can be (ab)used to simulate recursion. SDSs store global information and is
persistent. The retrn instruction — as will be shown in Section 6.3.4 — can then be used
to terminate. Therefore, Tasks can be crafted that recursively call themselves using a SDS
to simulate arguments.

• OnInterrupt Int
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Finally, a scheduling method is available that executes a Task when a given interrupt is
received. This method can be useful to launch a Task on the press on hardware events such
as the press of a button. Unfortunately, due to time constraints and focus, this functionality
is only built in the protocol, none of the current client implementations support this.

6.2 SDS Properties

MTask-SDSs on a client are available on the server as in the form of regular iTasks-SDSs. How-
ever, the same freedom that an SDS has in the iTasks-system is not given for SDSs that reside
on the client. Not all types are suitable to be located on a client, simply because it needs to
be representable on clients and serializable for communication. Moreover, SDSs behave a little
different in an mTask device compared to in the iTasks system. In an iTasks system, when the
SDS is updated, a broadcast to all watching Tasks in the system is made to notify them of the
update. SDSs can update often and the update might not be the final value it will get. Imple-
menting the same functionality on the mTask client would result in a lot of expensive unneeded
bandwidth usage. Therefore a device must publish the SDS explicitly to save bandwidth. Note
that this means that the SDS value on the device can be different compared to the value of the
same SDS on the server.

To add this functionality, the sds class could be extended. However, this would result in
having to update all existing views that use the sds class. Therefore, an extra class is added that
contains the extra functionality. Programmers can choose to implement it for existing views in
the future but are not obliged to. The publication function has the following signature:

class sdspub v where
pub :: (v t Upd) -> v t Expr | type t

Listing 6.1: The sdspub class

SDSs in the mTask-EDSL are always attached to a Main component. Thus, they are not
usable in the Task domain. To solve this, the SDSs found in the Main object are instantiated as
real SDS in the server. This poses a problem of naming because SDSs in the mTask-EDSL are
always anonymous at runtime. There is no way of labeling it since it is not a real entity, it is
just a function. When SDSs is instantiated and communicated with the device, they must be
retrievable and identifiable. Internally this identification happens through numeric identifiers,
but this is handy for programmers since. Therefore, an added class named namedsds is added
that provides the exact same functionality as the SDS class but adds a String parameter that
can later be used to identify an SDS in the bag of instantiated SDSs that result from compilation.
The types for this class are shown in Listing 6.2. Again, an example is added for illustration.
Retrieving the SDS after compilation is shown in Section 7.4.

class namedsds v where
namedsds :: ((v t Upd) -> In (Named t String) (Main (v c s))) -> (Main (v c s)) | ...

:: Named a b = Named infix 1 a b

sdsExample :: Main (v Int Stmt)
sdsExample = sds λx.0 Named "xvalue" In

{main= x =. x +. lit 42 }

Listing 6.2: The namedsds class



6.3. BYTECODE COMPILATION VIEW 23

6.3 Bytecode Compilation View
The mTask-Tasks are sent to the device in bytecode and are saved in the memory of the device.
To compile the EDSL code to bytecode, a view is added to the mTask-system encapsulated
in the type ByteCode. As shown in Listing 6.3, the ByteCode view is a boxed Reader Writer
State Transformer Monad (RWST) that writes bytecode instructions (BC, Subsection 6.3.1) while
carrying around a BCState. The state is kept between compilations and is unique to a device.
The state contains fresh variable names and a register of SDSs that are used.

Types implementing the mTask classes must have two free type variables. Therefore the
RWST is wrapped with a constructor and two phantom type variables are added. This means
that the programmer has to unbox the ByteCode object to be able to make use of the RWST
functionality such as return values. Tailor made access functions are used to achieve this with
ease. The fresh variable stream in a compiler using a RWST is often put into the Reader part
of the monad. However, not all code is compiled immediately and later on the fresh variable
stream cannot contain variables that were used before. Therefore this information is put in the
state which is kept between compilations.

Not all types are suitable for usage in bytecode compiled programs. Every value used in
the bytecode view must fit in the BCValue type which restricts the content. Most notably, the
type must be bytecode encodable. A BCValue must be encodable and decodable without losing
type or value information. At the moment a simple encoding scheme is used that uses single
byte prefixes to detect the type of the value. The devices know these prefixes and can apply the
same detection if necessary. Note that BCValue uses existentially quantified type variables and
therefore it is not possible to derive class instances such as iTasks. Tailor-made instances for
these functions have been made.
:: ByteCode a p = BC (RWS () [BC] BCState ())
:: BCValue = ∃ e: BCValue e & mTaskType, TC e
:: BCShare =

{ sdsi :: Int
, sdsval :: BCValue
, sdsname :: String
}

:: BCState =
{ freshl :: Int
, freshs :: Int
, sdss :: [BCShare]
}

class toByteCode a :: a -> String
class fromByteCode a :: String -> a
class mTaskType a | toByteCode, fromByteCode, iTask, TC a

instance toByteCode Int, ... , UserLED, BCValue
instance fromByteCode Int, ... , UserLED, BCValue

instance arith ByteCode
...
instance serial ByteCode

Listing 6.3: Bytecode view

6.3.1 Instruction Set
The instruction set is given in Listing 6.4. The instruction set is kept large, but the number of
instructions stays under 255 to get as much expressive power while keeping all instruction within
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one byte.
The interpreter running in the client is a stack machine. The virtual instruction BCLab is

added to allow for an easy implementation of jumping. However, this is not a real instruction
and the labels are resolved to actual program memory addresses in the final step of compilation
to save instructions and avoid label lookups at runtime.
:: BC = BCNop

| BCLab Int | BCPush BCValue | BCPop
//SDS functions
| BCSdsStore BCShare | BCSdsFetch BCShare | BCSdsPublish BCShare
//Unary ops
| BCNot
//Binary Int ops
| BCAdd | BCSub | BCMul
| BCDiv
//Binary Bool ops
| BCAnd | BCOr
//Binary ops
| BCEq | BCNeq | BCLes | BCGre
| BCLeq | BCGeq
//Conditionals and jumping
| BCJmp Int | BCJmpT Int | BCJmpF Int
//UserLED
| BCLedOn | BCLedOff
//Pins
| BCAnalogRead Pin | BCAnalogWrite Pin | BCDigitalRead Pin | BCDigitalWrite Pin
//Return
| BCReturn

Listing 6.4: Bytecode instruction set

All single byte instructions are converted automatically using a generic function which returns
the index of the constructor. The index of the constructor is the byte value for all instructions.
Added to this single byte value are the encoded parameters of the instruction. The last step of
the compilation is transforming the list of bytecode instructions to actual bytes.

6.3.2 Helper functions
Since the ByteCode type is just a boxed RWST, access to the whole range of RWST functions
is available. However, to use this, the type must be unboxed. After application the type must
be boxed again. To achieve this, several helper functions have been created. They are given in
Listing 6.5. The op and op2 functions is hand-crafted to make operators that pop one or two
values off the stack respectively. The tell̀ function is a wrapper around the RWST function
tell that appends the argument to the Writer value.
op2 :: (ByteCode a p1) (ByteCode a p2) BC -> ByteCode b Expr
op2 (BC x) (BC y) bc = BC (x >>| y >>| tell [bc])

op :: (ByteCode a p) BC -> ByteCode b c
op (BC x) bc = BC (x >>| tell [bc])

tell̀ :: [BC] -> (ByteCode a p)
tell̀ x = BC (tell x)

unBC :: (ByteCode a p) -> RWS () [BC] BCState ()
unBC (BC x) = x

Listing 6.5: Some helper functions
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6.3.3 Arithmetics & Peripherals
Almost all of the code from the simple classes exclusively use helper functions. Listing 6.6 shows
some implementations. The boolExpr class and the classes for the peripherals are implemented
using the same strategy.
instance arith ByteCode where

lit x = tell̀ [BCPush (BCValue x)]
(+.) x y = op2 x y BCAdd
...

instance userLed ByteCode where
ledOn l = op l BCLedOn
ledOff l = op l BCLedOff

Listing 6.6: Bytecode view implementation for arithmetic and peripheral classes

6.3.4 Control Flow
Implementing the sequence operator is very straightforward in the bytecode view. The function
just sequences the two RWSTs. The implementation for the If statement speaks for itself in
Listing 6.7. First, all the labels are gathered after which they are placed in the correct order
in the bytecode sequence. It can happen that multiple labels appear consecutively in the code.
This is not a problem since the labels are resolved to real addresses later on anyway.
freshlabel = get >>= λst=:{freshl}->put {st & freshl=freshl+1} >>| tell freshl

instance IF ByteCode where
IF b t e = BCIfStmt b t e
(?) b t = BCIfStmt b t (tell̀ [])

BCIfStmt (BC b) (BC t) (BC e) = BC (
freshlabel >>= λelse->freshlabel >>= λendif->
b >>| tell [BCJmpF else] >>|
t >>| tell [BCJmp endif, BCLab else] >>|
e >>| tell [BCLab endif]
)

instance noOp ByteCode where
noOp = BC (pure ())

Listing 6.7: Bytecode view for the IF class

The scheduling in the mTask-Tasks bytecode view is different from the scheduling in the C
view. Tasks in the C view can start new Tasks or even start themselves to continue, while in the
bytecode view, Tasks run indefinitely, one-shot or on interrupt. To allow interval and interrupt
Tasks to terminate, a return instruction is added. This class was not available in the original
system and is thus added. It just writes a single instruction so that the interpreter knows to
stop execution. Listing 6.8 shows the classes and implementation for the return expression.
class retrn v where

retrn :: v () Expr

instance retrn ByteCode where
retrn = tell̀ [BCReturn]

Listing 6.8: Bytecode view for the return instruction
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6.3.5 Shared Data Sources & Assignment
Fresh SDS are generated using the state and constructing one involves multiple steps. First, a
fresh identifier is grabbed from the state. Then a BCShare record is created with that identifier.
A BCSdsFetch instruction is written and the body is generated to finally add the SDS to the
actual state with the value obtained from the function. The exact implementation is shown in
Listing 6.9. The implementation for the namedsds class is exactly the same other than that it
stores the given name in the BCShare structure as well.
freshshare = get >>= λst=:{freshs}->put {st & freshs=freshs+1} >>| pure freshs

instance sds ByteCode where
sds f = {main = BC (freshshare

>>= λsdsi->pure {BCShare|sdsname="",sdsi=sdsi,sdsval=BCValue 0}
>>= λsds->pure (f (tell̀ [BCSdsFetch sds]))
>>= λ(v In bdy)->modify (addSDS sds v)
>>| unBC (unMain bdy))

}
instance sdspub ByteCode where

pub (BC x) = BC (censor (λ[BCSdsFetch s]->[BCSdsPublish s]) x)

addSDS sds v s = {s & sdss=[{sds & sdsval=BCValue v}:s.sdss]}

Listing 6.9: Bytecode view for arith

All assignable types compile to an RWST which writes the specific fetch instruction(s). For
example, using an SDS always results in an expression of the form sds x=4 In .... The actual
x is the RWST that always writes one BCSdsFetch instruction with the correctly embedded SDS.
Assigning to an analog pin will result in the RWST containing the BCAnalogRead instruction.
When the operation on the assignable is not a read operation from but an assign operation,
the instruction(s) will be rewritten accordingly. This results in a BCSdsStore or BCAnalogWrite
instruction respectively. The implementation for this is given in Listing 6.10.
instance assign ByteCode where

(=.) (BC v) (BC e) = BC (e >>| censor makeStore v)

makeStore [BCSdsFetch i] = [BCSdsStore i]
makeStore [BCDigitalRead i] = [BCDigitalWrite i]
makeStore [...] = [...]

Listing 6.10: Bytecode view implementation for assignment.

6.3.6 Actual Compilation
All the previous functions are tied together with the toMessages function. This function compiles
the bytecode and transforms the Task to a message. The SDSs that were not already sent to
the device are also added as messages to be sent to the device. This functionality is shown in
Listing 6.11. The compilation process consists of two steps. First, the RWST is executed. Then,
the Jump statements that jump to labels are transformed to jump to program memory addresses.
The translation of labels to program addresses is straightforward. The function consumes the
instructions one by one while incrementing the address counter with the length of the instruction.
The generic function consNum is used which gives the arity of the constructor. However, when it
encounters a BCLab instruction, the counter is not increased because the label will not result in
an actual instruction. The label is removed and the position of the label is stored in the resulting
map. When all labels are removed, the jump instructions are transformed using the implGotos
function that looks up the correct program address in the map resulting from the aforementioned
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function. This step is followed by comparing the old compiler state to the new one to find new
instantiated SDSs. The compilation concludes with converting the bytecode and SDSs to actual
messages ready to send to the client.
bclength :: BC -> Int
bclength (BCPush s) = 1 + size (toByteCode s)
bclength ... = ...
bclength x = 1 + consNum{|∗|} x

computeGotos :: [BC] Int -> ([BC], Map Int Int)
computeGotos [] _ = ([], newMap)
computeGotos [BCLab l:xs] i
# (bc, i) = computeGotos xs i
= (bc, put l i)
computeGotos [x:xs] i
# (bc, i) = computeGotos xs (i + bclength x)
= ([x:bc], i)

toRealByteCode :: (ByteCode a b) BCState -> (String, BCState)
toRealByteCode x s
# (s, bc) = runBC x s
# (bc, gtmap) = computeGotos bc 1
= (concat (map (toString o toByteVal) (map (implGotos gtmap) bc)), s)

implGotos map (BCJmp t) = BCJmp $ fromJust (get t map)
implGotos map (BCJmpT t) = BCJmpT $ fromJust (get t map)
implGotos map (BCJmpF t) = BCJmpF $ fromJust (get t map)
implGotos _ i = i

toMessages :: MTaskInterval (Main (ByteCode a b)) BCState -> ([MTaskMSGSend], BCState)
toMessages interval x oldstate
# (bc, newstate) = toRealByteCode (unMain x) oldstate
# newsdss = difference newstate.sdss oldstate.sdss
= ([MTSds sdsi e\\{sdsi,sdsval=e}<-newsdss] ++ [MTTask interval bc], newstate)

Listing 6.11: Actual compilation.

6.4 Examples
As an example for the bytecode compilation the following listing shows the thermostat example
given in Listing 4.9 compiled to bytecode. The left column indicates the position in the program
memory. The endif label is resolved to an address outside of the program space. This is not a
problem since this is included in the stopping condition of the interpreter. When the program
counter exceeds the length of the program, the task terminates.
0-1 : BCAnalogRead (Analog A0)
2-5 : BCPush (Int 50)
6 : BCGre
7-8 : BCJmpF 17 //Jump to else
9-11: BCPush (Bool 1)

12-13: BCDigitalWrite (Digital D0)
14-15: BCJmp 21 //Jump to endif
16-18: BCPush (Bool 0) //Else label
19 : BCDigitalWrite (Digital D0)
20 : //Endif label

Listing 6.12: Thermostat bytecode
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The factorial function can be expressed as an mTask-Task and uses the sds and the return
functionality. Typically this Task is called with the OnInterval scheduling strategy and will
calculate the factorial after which is will return. The following listings shows the actual mTask
and the generated messages followed by the actual bytecode in a readable form.
factorial :: Int -> Main (ByteCode () Stmt)
factorial i = sds λy=i In

namedsds λx=1 Named "result" In
{main =

IF (y <=. lit 1) (
pub x :. retrn

) (
x =. x ∗. y :. y =. y -. lit 1

)}

//Generating the actual messages with:
Start = fst $ toMessages (OnInterval 500) (factorial 5) zero

//The output will be
//[MTSds 2 (BCValue 5), MTSds 1 (BCValue 1), MTTask (OnInterval 500) ...]

Listing 6.13: Factorial as an mTask-Task

0-2 : BCSdsFetch 1
3-6 : BCPush (Int 1)
7 : BCLeq
8-9 : BCJmpF 16 //Jump to else

10-12: BCSdsPublish 2 ("result")
13 : BCReturn
14-15: BCJmp 37 //Jump to endif
16-18: BCSdsFetch 2 ("result") //Else label
19-21: BCSdsFetch 1
22 : BCMul
23-25: BCSdsStore 2 ("result")
26-28: BCSdsFetch 1
29-32: BCPush (Int 1)
33 : BCSub
34-36: BCSdsStore 1
37 : //Endif label

Listing 6.14: The resulting bytecode for the factorial function
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Chapter 7

System Considerations &
Implementation

The system provides a framework of functions with which an iTasks-system can add, change and
remove devices at runtime. Moreover, the iTasks-system can send mTask-Tasks — compiled at
runtime to bytecode by the mTask-view — to the device. The device runs an interpreter which
executes the Task’s bytecode following the provided scheduling strategy. Devices added to the
system are stored and get a profile for identification. These profiles are persistent during reboots
of the iTasks-system to allow for easy reconnecting with old devices. The way of interacting
with mTask-Tasks is analogous to interacting with iTasks-Tasks. This means that programmers
can access the SDSs made for a device in the same way as regular SDSs and they can execute,
combine and transform mTask-Tasks as if they where normal iTasks-Tasks.

7.1 Devices
A device is suitable for the system as a client if it can run the engine. The engine is compiled
from one codebase and devices implement (part of) the device specific interface. The shared
codebase only uses standard C and no special libraries or tricks are used. Therefore, the code is
compilable for almost any device or system. The full interface — excluding the device specific
settings — is listed in Appendix B. The interface works in a similar fashion as the EDSL. Devices
do not have to implement all functionality, this is analogous to the fact that views do not have
to implement all type classes in the EDSL. When the device connects with the server for the
first time, the specifications of what is implemented is communicated. Devices must be available
throughout sessions and cannot always be kept in scope and therefore they are stored in an SDS.

At the time of writing the following device families are supported and can run the device
software. Porting the client software to a new device does not require a lot of work. For
example, porting to the mbed device family only took about an hour.

• POSIX compatible systems connected via the Transmission Control Protocol (TCP).
This port only uses functionality from the standard C library and therefore runs on Linux
and MacOS.

• Microcontrollers supported by the mbed1 environment.
1https://mbed.com

https://mbed.com
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This is tested in particular on the STM32f7x series ARM development board.

• Microcontrollers family supported by ChibiOS2 connected via serial communication.
This is also tested in particular on the STM32f7x series ARM development board.

• Microcontrollers which are programmable in the Arduino Integrated Development Envi-
ronment (IDE) connected via serial communication or via TCP over WiFi or Ethernet.
This does not only include Arduino compatible boards but also other boards capable of
running Arduino code. A port of the client has been made for the ESP8266 powered
NodeMCU that is connected via TCP over WiFi. A port also has been made for the
regular Arduino Uno board which only boasts a meager 2K RAM. The stack size and
storage available for devices boasting this little RAM has to be smaller than default but
are still suitable to hold a hand full of Tasks.

7.1.1 Client
7.1.1.1 Engine

The client software is responsible for maintaining the communication and executing the Tasks
when scheduled. In practise, this means that the client is in a constant loop, checking com-
munication and executing Tasks. The pseudocode for this is shown in Algorithm 7.1. The
input_available function waits for input, but has a timeout set which can be interrupted. The
timeout of the function determines the amount of loops per time interval and is a parameter that
can be set during compilation for a device.

Data: list tasks, time tm
begin

while true do
if input available() then

receive data();
end
tm← now();
foreach t← tasks do

if is interrupt(t) and had interrupt(t) then
run task(t);

else if tm− t.lastrun > t.interval then
run task(t);
if t.interval == 0 then

delete task(t);
else

t.lastrun← t;
end

end
end

end
end

Algorithm 7.1: Engine pseudocode

2https://chibios.org

https://chibios.org


7.1. DEVICES 31

struct task {
uint16_t tasklength ;
uint16_t interval ;
unsigned long lastrun ;
uint8_t taskid ;
uint8_t *bc;

};

struct task * task_head (void);
struct task * task_next ( struct task *t);

struct sds {
int id;
int value;
char type;

};

struct sds * sds_head (void);
struct sds * sds_next ( struct sds *s);

Listing 7.1: The data type storing the Tasks

7.1.1.2 Storage

Tasks and SDSs are stored on the client not in program memory but in memory. Some devices
have very little memory and therefore memory space is very expensive and needs to be used
optimally. Almost all microcontrollers support heaps nowadays, however, the functions for allo-
cating and freeing the memory on the heap are not very space optimal and often leave holes in
the heap if allocations are not freed in a last in first out fashion. To overcome this problem, the
client will allocate a big memory segment in the global data block. This block of memory resides
under the stack and its size can be set in the interface implementation. This block of memory
will be managed in a similar way as the entire memory space of the device is managed. Tasks
will grow from the bottom up and SDSs will grow from the top down.

When a Task is received, the program will traverse the memory space from the bottom up,
jumping over all Tasks. A Task is stored as the structure followed directly by its bytecode.
Therefore it only takes two jumps to determine the size of the Task. When the program arrived
at the last Task, this place is returned and the newly received Task can be copied to there. This
method is analogously applied for SDSs, however, the SDSs grow from the bottom down.

When a Task or SDS is removed, all the remaining objects in the memory space are reordered
in such a way that there are no holes left. In practice this means that if the first received Task is
removed, all Tasks received later will have to move back. Obviously, this is quite time intensive
but it can not be permitted to leave holes in the memory since the memory space is so limited.
With this technique, even the smallest tested microcontrollers with only 2K RAM can hold
several Tasks and SDSs. Without this technique, the memory space will decrease over time and
the client can then not run for very long since holes are evidently created at some point.

The structure instances and helper functions for traversing for Tasks and SDSs are shown in
Listing 7.1.

7.1.1.3 Interpretation

The execution of a Task is started by running the run_task function and always starts with setting
the program counter and stack pointer to zero and the bottom respectively. When finished, the
interpreter executes one step at the time while the program counter is smaller than the program
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length. This code is listed in Listing 7.2. One execution step is basically a switch statement
going over all possible bytecode instructions. The implementation of some instructions is shown
in the listing. The BCPush instruction is a little more complicated in the real code because some
decoding will take place as not all BCValues are of the same length and are encoded.
# define f16(p) program [pc ]*265+ program [pc +1]

void run_task ( struct task *t){
uint8_t * program = t->bc;
int plen = t-> tasklength ;
int pc = 0;
int sp = 0;
while (pc < plen){

switch ( program [pc ++]){
case BCNOP:

break ;
case BCPUSH :

stack[sp ++] = pc++ // Simplified
break ;

case BCPOP:
sp --;
break ;

case BCSDSSTORE :
sds_store (f16(pc), stack[--sp]);
pc +=2;
break ;

// ...
case BCADD:

stack[sp -2] = stack[sp -2] + stack[sp -1];
sp -= 1;
break ;

// ...
case BCJMPT :

pc = stack[--sp] ? program [pc]-1 : pc +1;
break ;

// ...
}

}
}

Listing 7.2: Rough code outline for interpretation

7.2 iTasks
The server part of the system is written in iTasks. Functions for managing are added. This in-
cludes functionality for adding, removing and updating devices. Functions for sending Tasks and
SDSs to devices and functionality to remove them. Furthermore, an interactive web application
has been created that provides an interactive management console for these manageming tasks.
This interface provides functionality to show Tasks and SDSs and their according status. It also
provides the user with a library of example mTask-Tasks that can be sent interactively to the
device.

7.2.1 Device Storage
Everything that a device encompasses is stored in the MTaskDevice record type which is in turn
stored in an SDS. This includes management for the SDSs and Tasks stored on the device. The
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MTaskDevice definition is shown in Listing 7.3 accompanied with the necessary classes and sub
types. Devices added to the system must be reachable asynchronously. This implies that the
programmer only needs to keep hold of the reference to the device and not the actual device
record.
:: Channels :== ([MTaskMSGRecv], [MTaskMSGSend], Bool)
:: MTaskDeviceSpec = ... // Explained in a later section
:: MTaskMSGRecv = ... // Message format, explained in a later section
:: MTaskMSGSend = ... // Also explained in a later section
:: MTaskResource

= TCPDevice TCPSettings
| SerialDevice TTYSettings
| ...

:: MTaskDevice =
{ deviceTask :: Maybe TaskId
, deviceError :: Maybe String
, deviceChannels :: String
, deviceName :: String
, deviceState :: BCState
, deviceTasks :: [MTaskTask]
, deviceResource :: MTaskResource
, deviceSpec :: Maybe MTaskDeviceSpec
, deviceShares :: [MTaskShare]
}

channels :: MTaskDevice -> Shared Channels

class MTaskDuplex a where
synFun :: a (Shared Channels) -> Task ()

Listing 7.3: Device type

The deviceResource component of the record must implement the MTaskDuplex interface that
provides a function that launches a Task used for synchronizing the channels. The deviceChannels
field can be used to get the memory SDS containing the channels. This field does not contain the
channels itself because they update often. The field is used to get a memory SDS containing the
actual channel data when calling the channels function. The deviceTask stores the Task-id for
this Task when active so that it can be checked upon. This top-level task has the duty to report
exceptions and errors as they are thrown by setting the deviceError field. All communication
goes via these channels. To send a message to the device, the system just puts it in the channels.
Messages sent from the client to the server are also placed in there. In the case of the TCP device
type, the Task is just a simple wrapper around the existing tcpconnect function in iTasks. In
case of a device connected by a serial connection, it uses the newly developed serial port library
of Clean3. The implementation and semantics for the MTaskMSGRecv and MTaskMSGSend types are
given in Section 7.3.

Besides all the communication information, the record also keeps track of the Tasks currently
on the device, the compiler state (see Section 6.3) and the according SDSs. Finally, it stores the
specification of the device that is received when connecting. All of this is given in Listing 7.3.
The definitions of the message format are explained in the following section.

7.2.2 SDSs
SDSs on the device can be accessed by both the device and the server. While it would be possible
to only store the SDSs on the device, this would require a lot of communication because every read

3https://gitlab.science.ru.nl/mlubbers/CleanSerial

https://gitlab.science.ru.nl/mlubbers/CleanSerial
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operation will then result in sending messages to-and-fro the device. Thus, the Task requesting
the shared information can just be provided with the synchronized value. As mentioned before,
the device has to explicitly publish an update. This has the implication that the server and
the client can get out of sync. However, this is by design and well documented. In the current
system, an SDS can only reside on a single device.

There are several possible approaches for storing SDSs on the server each with their own level
of control. A possible way is to — in the device record — add a list of references to iTasks-SDSs
that represent the SDS on the device. The problem with this is the fact that an SDS can become
an orphan. The SDS is still accessible even when the device is long gone. There is no way of
knowing whether the SDS is unreachable because of the device being gone, or the SDS itself
is gone on the device. Accessing the SDS happens by calling the get, set and upd functions
directory on the actual SDS.

Another approach would be to have reference to an SDS containing a table of SDS values
per device. This approach suffers the same orphan problem as before. Accessing a single SDS
on the device happens by calling the get, set and upd functions on the actual table SDS with an
applied mapReadWrite. Using parametric lenses can circumvent the problem of watchers getting
notified for other shares that are written. Error handling is better than the previously mentioned
approach because an SDS can know whether the SDS has really gone because it will not be
available anymore in the table. It still does not know whether the device is still available.

Finally, all devices containing all of their SDSs in a table could be stored in a single big SDS.
While the mapReadWrite functions require a bit more logic, they can determine the source of the
error and act upon it. Also, the parametric lenses must contain more logic. A downside of this
approach is that updating a single SDS requires an update of the entire object. In practise, this
is not a real issue since almost all information can be reused and SDS residing on devices are
often not updated with a very high frequency.

7.2.3 Parametric Lenses
The type for the parametric lens of the SDS containing all devices is Maybe (MTaskDevice, Int).
There are several levels of abstraction that have to be introduced. First, the SDS responsible for
storing the entire list of devices is called the global SDS. Secondly, an SDS can focus on a single
device, such SDSs are called local SDSs. Finally, an SDS can focus on a single SDS on a single
device. These SDSs are called share SDSs. Using parametric lenses, the notifications can be
directed to only the watchers interested. Moreover, using parametric lenses, the SDS can know
whether it is updating a single SDS on a single device and synchronize the value with the actual
device. This means that when writing to a share SDS the update is also transformed to messages
that are put in the channels of the corresponding device to also notify the device of the update.
The SDS is tailor-made and uses an actual standard SDS that writes to a file or memory as the
storage. The tailor-made read and write functions are only used to detect whether it is required
to send an update to the actual device.

Listing 7.4 shows the implementation of the big SDS. From this SDS all other SDSs are
derived. The following paragraphs show how this is achieved for the global SDS local SDS and
the share SDS. In the big SDS, reading the value is just a matter of reading the standard SDS that
serves as the actual storage of the SDS. The derived shares will filter the output read accordingly.
Writing the share requires some extra work because it might be possible that an actual device
has to be notified. First, the actual storage of the SDS is written. If the parameter was Nothing
— the global SDS — the write operation is done. If the parameter was Just (d, -1) — a local
SDS — nothing has to be done as well. The final case is the special case, when the parameter is
Just (d, i), this means that the SDS was focussed on device d and SDS i and thus it needs to
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write to it. First it locates the device in the list, followed by the location of the share to check
whether is still exists. Finally the actual update messages are added to the device channels using
the sendMessagesIW function.

All of the methods share the same SDSNotifyPred p which is a function p -> Bool and deter-
mines for the given p whether a notification is required. The predicate function has the p of the
writer curried in and can determine whether the second argument — the reader — needs to be
notified. In practice, the reader only needs to be notified when the parameters are exactly the
same.
($<) :: a (f a) -> (f b)
($<) a fb = fmap (const a) fb

deviceStore :: RWShared (Maybe (MTaskDevice, Int)) [MTaskDevice] [MTaskDevice]
deviceStore = SDSSource {SDSSource | name="deviceStore", read=realRead, write=realWrite}
where

realRead :: (Maybe (MTaskDevice,Int)) ∗IWorld -> (MaybeError TaskException [MTaskDevice], ∗IWorld)
realRead p iw = read realDeviceStore iw

realWrite :: (Maybe (MTaskDevice,Int)) [MTaskDevice] ∗IWorld -> (MaybeError TaskException (SDSNotifyPred (
Maybe (MTaskDevice,Int))), ∗IWorld)

realWrite mi w iw
# (merr, iw) = write w realDeviceStore iw
| isError merr || isNothing mi = (merr $> gEq{|∗|} mi, iw)
# (Just (dev, ident)) = mi
| ident == -1 = (merr $> gEq{|∗|} mi, iw)
= case find ((==)dev) w of

Nothing = (Error $ exception "Device lost", iw)
Just {deviceShares} = case find (λd->d.identifier == ident) deviceShares of

Nothing = (Error $ exception "Share lost", iw)
Just s = case sendMessagesIW [MTUpd ident s.MTaskShare.value] dev iw of

(Error e, iw) = (Error e, iw)
(Ok _, iw) = (Ok $ gEq{|∗|} mi, iw)

realDeviceStore :: Shared [MTaskDevice]
realDeviceStore = sharedStore "mTaskDevices" []

Listing 7.4: Device SDS

7.2.3.1 Global SDSs

Accessing the global SDS is just a matter of focussing the deviceStore to Nothing. In this way,
Tasks watching the SDS will only be notified if a device is added or removed. The actual code
is as follows:
deviceStoreNP :: Shared [MTaskDevice]
deviceStoreNP = sdsFocus Nothing deviceStore

Listing 7.5: Global SDS

7.2.3.2 Local SDSs

Accessing a single device can be done using the deviceShare function. Since device comparison
is shallow, the device that is given is allowed to be an old version. The identification of devices
is solely done on the name of the channels and is unique throughout the system. This type of
SDS will only be notified if the device itself changed. It will not be notified when only a single
SDS on the device changes. The implementation is as follows:
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deviceShare :: MTaskDevice -> Shared MTaskDevice
deviceShare d = mapReadWriteError

( λds->case find ((==)d) ds of
Nothing = exception "Device lost"
Just d = Ok d)

, λw ds->case splitWith ((==)d) ds of
([], _) = Error $ exception "Device lost"
([_:_], ds) = Ok $ Just [w:ds])

$ sdsFocus (Just (d, -1)) deviceStore

Listing 7.6: Local SDS

7.2.3.3 Local-SDS specific SDSs

A single SDS on a single device can be accessed using the shareShare function. This function
focusses the global SDS on a single SDS from a single device. It can use old share references
in the same fashion as the local SDS only treating it as references. It uses the mapReadWrite
functions to serve the correct part of the information. When a Task writes to this SDS, the
global SDS will know this through the parameter and propagate the value to the device.
shareShare :: MTaskDevice MTaskShare -> Shared BCValue
shareShare dev share = sdsFocus ()

$ mapReadWriteError (read, write)
$ sdsFocus (Just (dev, share.identifier))
$ deviceStore

where
read :: [MTaskDevice] -> MaybeError TaskException BCValue
read devs = case find ((==)dev) devs of

Nothing = exception "Device lost"
Just d = case find ((==)share) d.deviceShares of

Nothing = exception "Share lost"
Just s = Ok s.MTaskShare.value

write :: BCValue [MTaskDevice] -> MaybeError TaskException (Maybe [MTaskDevice])
write val devs = case partition ((==)dev) devs of

([], _) = Error $ exception "Device doesn't exist anymore"
([_,_:_], _) = Error $ exception "Multiple matching devices"
([d=:{deviceShares}], devs) = case partition ((==)share) deviceShares of

([], _) = Error $ exception "Share doesn't exist anymore"
([_,_:_], _) = Error $ exception "Multiple matching shares"
([s], shares) = Ok $ Just [{MTaskDevice | d &

deviceShares=[{MTaskShare | s & value=val}:shares]}:devs]

Listing 7.7: Local SDS

7.3 Communication
The communication from the server to the client and vice versa is just a character stream
containing encoded mTask messages. The synFun belonging to the device is responsible for
sending the content in the left channel and putting received messages in the right channel.
Moreover, the boolean flag in the channel type should be set to True when the connection is
terminated. The specific encoding of the messages is visible in Appendix A. The type holding
the messages is shown in Listing 7.8. Detailed explanation about the message types and according
actions will be given in the following subsections.
:: MTaskId :== Int
:: MSDSId :== Int
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:: MTaskFreeBytes :== Int
:: MTaskMSGRecv

= MTTaskAck MTaskId MTaskFreeBytes | MTTaskDelAck MTaskId
| MTSDSAck MSDSId | MTSDSDelAck MSDSId
| MTPub MSDSId BCValue | MTMessage String
| MTDevSpec MTaskDeviceSpec | MTEmpty

:: MTaskMSGSend
= MTTask MTaskInterval String | MTTaskDel MTaskId
| MTShutdown | MTSds MSDSId BCValue
| MTUpd MSDSId BCValue | MTSpec

:: MTaskInterval = OneShot | OnInterval Int | OnInterrupt Int

Listing 7.8: Available messages

7.3.1 Device Specification

The server stores a description for every device available in a record type. From the macro
settings in the client — in the interface file— a profile is created that describes the specification
of the device. When the connection between the server and a client is established, the server
will send a request for specification. The client serializes its specification and send it to the
server so that the server knows what the client is capable of. The exact specification is shown
in Listing 7.9 and stores the peripheral availability, the memory available for storing Tasks and
SDSs and the size of the stack. Not all peripheral flags are shown for brevity.

:: MTaskDeviceSpec =
{ haveLed :: Bool
, haveLCD :: Bool
, have...
, bytesMemory :: Int
, stackSize :: Int
, aPins :: Int
, dPins :: Int
}

Listing 7.9: Device specification for mTask-Tasks

The code on the device generates the specification. When a device does not have a specific
peripheral, the code will also not be on the device. In the interface file, the code for peripherals is
always guarded by macros. Thus, if the peripheral is not there, the macro is set accordingly and
the code will not be included. To illustrate this, Listings 7.10-7.11 show parts of the interface
file and device specification generation function for the NodeMCU microcontroller which only
boasts a single analog pin and eight digital pins.
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...
#elif defined ARDUINO_ESP8266_NODEMCU
# define APINS 1
# define DPINS 8
# define STACKSIZE 1024
# define MEMSIZE 1024
# define HAVELED 0
# define HAVEHB 0

#if APINS > 0
void write_apin ( uint8_t p, uint8_t v);
uint8_t read_apin ( uint8_t pin);
#endif

Listing 7.10: Specification in the interface

...
void spec_send (void) {

write_byte (’c’);
write_byte (0 | ( HAVELED << 0)

| ( HAVELCD << 1)
| ( HAVEHB << 2)
| ...);

write16 ( MEMSIZE );
write16 ( STACKSIZE );
write_byte (APINS);
write_byte (DPINS);
write_byte (’\n’);

}

Listing 7.11: Actual generation

7.3.2 Add a device

A device can be added by filling in the MTaskDevice record as much as possible and running the
connectDevice function. This function grabs and clears the channels, starts the synchronization
Task (synFun), makes sure the errors are handled when needed and runs a processing function
in parallel to react on the incoming messages. Moreover, it sends a specification request to the
device in question to determine the details of the device and updates the record to contain the
top-level Task-id. All device functionality heavily depends on the specific deviceShare function
that generates an SDS for a specific device. This allows giving an old device record to the
function and still update the latest instance. Listing 7.12 shows the connection function.

process :: MTaskDevice (Shared Channels) -> Task ()
process device ch = forever $ wait "process" (not o isEmpty o fst3) ch

>>= λ(r,s,ss)->upd (appFst3 (const [])) ch >>| proc r
where

proc :: [MTaskMSGRecv] -> Task ()
proc [] = treturn ()
proc [m:ms] = (case m of

MTPub i val = updateShareFromPublish device i val @! ()
...
MTDevSpec s = deviceAddSpec device s @! ()
) >>| proc ms

connectDevice :: MTaskDevice -> Task MTaskDevice
connectDevice device = set ([], [], False) ch

>>| appendTopLevelTask 'DM'.newMap True
( process device ch -||- catchAll (getSynFun device.deviceData ch) errHdl)
>>= λtid->upd (λd->{d&deviceTask=Just tid,deviceError=Nothing}) (deviceShare device)
>>| set (r,[MTSpec],ss) ch
>>| treturn device

where
errHdl e = upd (λd->{d & deviceTask=Nothing, deviceError=Just e}) (deviceShare device) @! ()
ch = channels device

Listing 7.12: Connect a device

Figure 7.1 shows the connection diagram. The client responds to the server with their device
specification. This is detected by the processing function and the record is updated accordingly.
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Server Client

MTSpec
MTDevSpec

Figure 7.1: Connect a device

7.3.3 Tasks & SDSs
When a Task is sent to the device it is added to the device record without an identifier. The
actual identifier is added to the record when the acknowledgement of the Task by the device is
received. The connection diagram is shown in Figure 7.2.

Server Client

MTSDS
MTSDSAck

MTTask
MTTaskAck

Figure 7.2: Sending a Task to a device

The function for sending a Task to the device is shown in Listing 7.13. First the Task is
compiled into messages. The details of the compilation process are given in Section 6.3. The
new SDSs that were generated during compilation are merged with the existing device’s SDSs.
Furthermore the messages are placed in the channel SDS of the device. This will result in sending
the actual SDS specification and Task specifications to the device. A Task record is created with
the identifier −1 to denote a Task not yet acknowledged. Finally the device itself is updated
with the new state and with the new Task. After waiting for the acknowledgement the device is
updated again and the Task returns.
makeTask :: String Int -> Task MTaskTask
makeTask name ident = get currentDateTime @ λdt->{MTaskTask | name=name, ident=ident, dateAdded=dt}

makeShare :: String Int BCValue -> MTaskShare
makeShare withTask identifier value = {MTaskShare | withTask=[withTask], identifier=identifier, value=value}

sendTaskToDevice :: String (Main (ByteCode a Stmt)) (MTaskDevice, MTaskInterval) -> Task (MTaskTask, [
MTaskShare])

sendTaskToDevice wta mTask (device, timeout)
# (msgs, newState=:{sdss}) = toMessages timeout mTask device.deviceState
# shares = [makeShare wta "" sdsi sdsval\\{sdsi,sdsval}<-sdss, (MTSds sdsì _)<-msgs | sdsi == sdsì ]
= updateShares device ((++) shares)

>>| sendMessages msgs device
>>| makeTask wta -1
>>= λt->upd (addTaskUpState newState t) (deviceShare device)
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>>| wait "Waiting for task to be acked" (taskAcked t) (deviceShare device)
>>| treturn (t, shares)

where
addTaskUpState :: BCState MTaskTask MTaskDevice -> MTaskDevice
addTaskUpState st task device = {MTaskDevice | device & deviceState=st, deviceTasks=[

task:device.deviceTasks]}
taskAcked t d = maybe True (λt->t.ident <> -1) $ find (eq t) d.deviceTasks
eq t1 t2 = t1.dateAdded == t2.dateAdded && t1.MTaskTask.name == t2.MTaskTask.name

Listing 7.13: Sending a Task to a device

7.3.4 Miscellaneous Messages
One special type of message is available which is sent to the device only when it needs to reboot.
When the server wants to stop the bond with the device it sends the MTShutdown message. The
device will then clear its memory, thus losing all the SDSs and Tasks that were stored and reset
itself. Shortly after the shutdown message a new server can connect to the device because the
device is back in listening mode.

7.3.5 Integration
When the system starts up, the devices from the previous execution still residing in the SDS must
be cleaned up. It might be the case that they contain Tasks, SDSs or errors that are no longer
applicable in this run. A user or programmer can later choose to reconnect to some devices.
startupDevices :: Task [MTaskDevice]
startupDevices = upd (map reset) deviceStoreNP

where reset d = {d & deviceTask=Nothing, deviceTasks=[], deviceError=Nothing}

Listing 7.14: Starting up the devices

The system’s management is done through the interface of a single Task called mTaskManager.
To manage the system, a couple of different functionalities are necessary and are launched. An
image of the management interface is shown in Figure 7.3. The left sidebar of the interface shows
the list of example Tasks that are present in the system. When clicking a Task, a dialog opens
in which a device can be selected to send the Task to. The dialog might contain user specified
variables. All example mTask-Tasks are of the type Task (Main (ByteCode () Stmt)) and can
thus ask for user input first if needed for parameterized mTask-Tasks. The bottom panel shows
the device information. In this panel, the devices can be created and modified. Moreover, this
panel allows the user to reconnect with a device after a restart of the server application.

7.4 Example

7.4.1 Framework
Systems built with support for mTask often follow the same design pattern. First the devices are
created — with or without the interaction of the user — and they are then connected. When all
devices are registered, the mTask-Tasks can be sent and iTasks-Tasks can be started to monitor
the output. When everything is finished, the devices are removed and the system is shut down.
To illustrate this, a demo blinking application is shown in Listing 7.15. The application is a
complete iTasks application.
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Figure 7.3: The device management interface

module blinkdemo

import iTasks
import mTask
import Devices.mTaskDevice

from Data.Func import $

Start world = startEngine blink world

blink :: Task ()
blink = addDevice

>>= connectDevice
>>= λstm->sendTaskToDevice "blink" blinkTask (stm, OnInterval 1000)
>>= λ(st, [_,t])->forever (

updateSharedInformation "Which led to blink" [] (shareShare stm t)
) >>∗ [OnAction (Action "Shutdown") $ always

$ deleteDevice stm >>| shutDown 0
]

where
blinkTask = sds λled=LED1 In sds λx=True In {main =

ledOff led1 :. ledOff led2 :. ledOff led3 :.
IF x (ledOff led) (ledOn led) :.
x =. Not x}

Listing 7.15: mTask framework for building applications
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7.4.2 Thermostat
The thermostat is a classic example program for showing interactions between peripherals. The
following program shows a system containing two devices. The first device — the sensor —
contains a temperature sensor that measures the room temperature. The second device — the
actor — contains a heater, connected to the digital pin D5. Moreover, this device contains an
LED to indicate whether the heater is on. The following code shows an implementation for this.
The code makes use of all the aspects of the framework. Note that a little bit of type twiddling
is required to fully use the result from the SDS. This approach is still type safe due to the type
safety of Dynamics.
thermos :: Task ()
thermos = makeDevice "nodeM" nodeMCU >>= connectDevice

>>= λnod-> makeDevice "stm32" stm32 >>= connectDevice
>>= λstm-> sendTaskToDevice "sensing" sensing (nod, OnInterval 1000)
>>= λ(st, [t])->sendTaskToDevice "acting" acting (stm, OnInterval 1000)

(λ(BCValue s)->set (BCValue $ dynInt (dynamic s) > 0) (shareShare nod a))
>>∗ [OnAction (Action "Shutdown") $ always $ deleteDevice nod >>| deleteDevice stm >>| shutDown 0]

where
dynInt :: Dynamic -> Int
dynInt (a :: Int) = a

sensing = sds λx=0 In {main=
x =. analogRead A0 :. pub x

}
acting = sds λcool=False In {main=

IF cool (ledOn LED1) (ledOff LED1) :.
digitalWrite D5 cool

}
nodeMCU = makeDevice "NodeMCU"

(TCPDevice {host="192.168.0.12", port=8888})
stm32 = makeDevice "Stm32"

(SerialDevice {devicePath="/dev/ttyUSB0", baudrate=B9600, ...}

Listing 7.16: Thermostat example

7.4.3 Lifting mTask-Tasks to iTasks-Tasks
If the user does not want to know where and when an mTask is actually executed and is just
interested in the results, it can lift the mTask to an iTasks-Task. The function is called with a
name, mTask, device and interval specification and it will return a Task that finishes if and only
if the mTask has returned.
liftmTask :: String (Main (ByteCode () Stmt)) (MTaskDevice, MTaskInterval) -> Task [MTaskShare]
liftmTask wta mTask c=:(dev, _)= sendTaskToDevice wta mTask c

>>= λ(t, shs)->wait "Waiting for mTask to return" (taskRemoved t) (deviceShare dev)
>>| viewInformation "Done!" [] ()
>>| treturn shs

where
taskRemoved t d = isNothing $ find (λt1->t1.ident==t.ident) d.deviceTasks

Listing 7.17: Lifting mTask-Tasks to iTasks

The factorial function example from Chapter 6 can then be lifted to a real iTasks-Task with
the following code:
factorial :: MTaskDevice -> Task BCValue
factorial dev = enterInformation "Factorial of ?" []

>>= λfac->liftmTask "fact" (fact fac) (dev, OnInterval 100)
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@ fromJust o find (λx->x.humanName == "result")
@ λs->s.MTaskShare.value

where
fact i = sds λy=i

In namedsds λx=(1 Named "result")
In {main = IF (y <=. lit 1)

( pub x :. retrn )
( x =. x ∗. y :. y =. y -. lit 1 )}

Listing 7.18: Lifting the factorial Task to iTasks

7.4.4 Heartbeat & Oxygen Saturation Sensor
As an example, the addition of a new sensor will be demonstrated. The heartbeat and oxygen
saturation sensor add-on is a PCB the size of a fingernail with a red LED and a light sensor
on it. Moreover, it contains an I2C chip to communicate. The company producing the chip
provides the programmer with example code for Arduino and mbed. The sensor emits red light
and measures the intensity of the light returned. The microcontroller hosting the device has
to keep track of four seconds of samples to determine the heartbeat. In the mTask-system, an
abstraction is made. The current implementation runs on mbed supported devices.

7.4.4.1 mTask Classes

First, a class has to be devised to store the functionality of the sensor. The heartbeat sensor
updates four values continuously, namely the heartbeat, the oxygen saturation and the validity
of the two. The real value and the validity are combined in an ADT and functions are added for
both of them in the new hb class. The values are combined in such a way that they fit in a 16
bit integer with the last bit representing the validity of the reading. The introduced datatype
housing the values should implement the mTaskType classes. The definition is as follows:
:: Heartbeat = HB Int Bool
:: SP02 = SP02 Int Bool

instance toByteCode Heartbeat
where toByteCode (HB i b) = "h" +++ (to16bit $ (i << 1) bitand (if b 1 0))

instance toByteCode SP02 where ...

instance fromByteCode Heartbeat
where fromByteCode s = let i = fromByteCode s //The Int from bytecode

in HB (i >> 1) (i bitand 1 > 0)
instance fromByteCode SP02 where ...

derive class iTask Heartbeat, SP02

class hb v where
getHb :: (v Heartbeat Expr)
getSp02 :: (v SP02 Expr)

Listing 7.19: The hb class and class implementations

7.4.4.2 Bytecode Implementation

The class is available now, and the implementation can be created. The implementation is trivial
since the functionality is limited to retrieving single values and no assignment is possible. The
following code shows the implementation. Dedicated bytecode instructions have been added to
support the functionality.
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:: BC
= BCNop
| ...
| BCGetHB
| BCGetSP02

instance hb ByteCode where
getHb = tell̀ [BCGetHB]
getSp02 = tell̀ [BCGetSP02]

Listing 7.20: The hb bytecode instance

7.4.4.3 Device Interface

The bytecode instructions are added but still the functionality needs to be added to the device
interface to be implemented by clients. The following addition to interface.h and the interpreter
shows the added instructions. When adding a peripheral, the devices not having the peripheral
do not need to have their code recompiled. New instructions always get a higher bytecode number
if added correctly. The peripheral byte in the device specification by default shows a negative
flag for every peripheral. Only the peripherals added will be flagged positive.
// interface.h
...
#if HAVEHB == 1
uint16_t get_hb();
uint16_t get_spo2();
#endif
...

// interpret.c
while(pc < plen){

switch(program[pc++]){
...

#if HAVEHB == 1
case BCGETHB:

stack[sp++] = get_hb();
break;

case BCGETSP02:
stack[sp++] = get_spo2();
break;

#endif
...

Listing 7.21: Adding the device interface

7.4.4.4 Client Software

The device client software always executes the real_setup in which the client software can setup
the connection and peripherals. In the case of the heartbeat peripheral it starts a thread running
the calculations. The thread started in the setup will set the global heartbeat and oxygen level
variables so that the interface functions for it can access it. This is listed in Listing 7.22.
If interrupts were implemented, the Tasks using the heartbeat sensor could be executed on
interrupt. The heartbeat thread can fire an interrupt everytime it calculated a new heartbeat.
Serial pc;
Thread thread ;

void heartbeat_thread (void) {
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// Constant heartbeat calculations
}

void real_setup (void) {
pc.baud (19200) ;
thread .start( heartbeat_thread );

}

Listing 7.22: Heartbeat code in the client

7.4.4.5 Example

The following code shows a complete example of a Task controlling an STM microcontroller
containing a heartbeat sensor. The web application belonging to the server shows the heartbeat
value and starts an alert Task when it exceeds the value given or is no longer valid. This example
also shows how named SDS are handled.
hbwatch :: (Task a) Int -> Task ()
hbwatch alert lim

= makeDevice "stm32" stm32
>>= connectDevice
>>= λstm ->sendTaskToDevice "monitor" monitor (stm, OnInterval 200)
>>= λ(t, sh)->mon (fromJust $ find (λx->x.name == "hb") sh)
>>∗ [OnAction (Action "Shutdown") $ always $ deleteDevice stm >>| shutDown 0]

where
mon :: (Shared BCValue) -> Task ()
mon b = whileUnchanged (mapRead dynHB b)

λhb=:(HB i valid)->if (not valid || i > lim)
alert (viewInformation "HB Okay" [] hb)

dynHB :: Dynamic -> HeartBeat
dynHB (a :: HeartBeat) = a

monitor = namedsds λhb=(0 Named hb) In
{main= hb = getHB :. pub hb }

Listing 7.23: Heartbeat example
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Chapter 8

Discussion & Conclusion

8.1 Discussion & Future Research
The novel system is functional but still a crude prototype and a proof of concept. The system
shows potential but improvements and extensions for the system are amply available in several
fields of study.

8.1.1 Simulation
An additional simulation view to the mTask-EDSL could be added that works in the same way as
the existing C-backed simulation. It simulates the bytecode interpretation. Moreover, it would
also be possible to let the simulator function as a real device, thus handling all communication
through the existing SDS-based systems. At the moment the POSIX -client is the reference client
and contains debugging code. Adding a simulation view to the system allows for easy interactive
debugging. However, it might not be easy to devise a simulation tool that accurately simulates
the mTask system on some levels. The execution strategy can be simulated but timing and
peripheral input/output are more difficult to simulate properly.

8.1.2 Optimization
Multitasking on the client: True multitasking could be added to the client software. This
allows mTask-Tasks to run truly parallel. All mTask-Tasks get slices of execution time and will
each have their own interpreter state instead of a single system-wide state which is reset after
am mTask finishes. This does require separate stacks for each Task and therefore increases the
system requirements of the client software. However, it could be implemented as a compile-
time option and exchanged during the handshake so that the server knows the multithreading
capabilities of the client. Multithreading allows Tasks to be truly interruptible by other Tasks.
Furthermore, this allows for more fine-grained timing control of Tasks.

Optimizing the interpreter: Due to time constraints and focus, hardly any work has been
done in the interpreter. The current interpreter is a no nonsense stack machine. A lot of
improvements can be done in this part. For example, precomputed gotos can improve jumping
to the correct part of the code corresponding to the correct instruction. Moreover, the stack
currently consists of 16-bit values. All operations work on 16-bit values and this simplifies the
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interpreter implementation. A memory improvement can be made by converting the stack to 8-
bit values. This does pose some problems since an equality instruction must work on single-byte
booleans and two-byte integers. Adding specialized instructions per word size could overcome
this problem.

8.1.3 Resources
Resource analysis: Resource analysis during compilation can be useful to determine if an
mTask-Task is suitable for a specific device. If the device does not contain the correct peripherals
— such as an LCD — then the mTask-Task should be rejected and feedback to the user must
be given. It might even be possible to do this statically on the type level. The current system
does not have any of this built-in. Sending a Task that uses the LCD to a device not containing
one will result in the device just skipping the LCD related instructions.

Extended resource analysis: The previous idea could be extended to the analysis of stack
size and possibly communication bandwidth. With this functionality ever more reliable fail-over
systems can be designed. When the system knows precise bounds it can allocate more Tasks
on a device whilst staying within safe memory bounds. The resource allocation can be done at
runtime within the backend itself or a general backend can be devised that can calculate the
resources needed for a given mTask. A specific mTask cannot have multiple views at the same
time due to the restrictions of class based shallow embedding. It might even be possible to
encode the resource allocation in the type system itself using forms of dependant types.

8.1.4 Functionality
Add more combinators: More Task-combinators — already existing in the iTasks-system —
could be added to the mTask-system to allow for more fine-grained control flow between mTask-
Tasks. In this way the new system follows the TOP paradigm even more and makes programming
mTask-Tasks for TOP-programmers more seamless. Some of the combinators require previously
mentioned extension such as the parallel combinator. Others might be achieved using simple
syntactic transformations.

Launch Tasks from a Task: Currently the C-view allows Tasks to launch other Tasks. In
the current system this type of logic has to take place on the server side. Adding this function-
ality to the bytecode-view allows greater flexibility, easier programming and less communication
resources. Adding this type of scheduling requires modifications to the client software and exten-
sions to the communication protocol since relations between Tasks also need to be encoded and
communicated. A similar technique as used with SDSs has to be used to overcome the scoping
problem.

The SDS functionality in the current system is bare. There is no easy way of reusing an
SDS for another Task on the same device or on another device. Such functionality can be
implemented in a crude way by tying the SDSs together in the iTasks environment. However,
this will result in a slow updating system. Functionality for reusing shares from a device should
be added. This requires rethinking the storage because some typedness is lost when the SDS
is stored after compilation. A possibility would be to use runtime typing with Dynamics or the
encoding technique currently used for BCValues. Using SDSs for multiple Tasks within one device
is solved when the previous point is implemented.

Another way of improving on SDS handling is to separate SDSs from devices. In this imple-
mentation, the SDS not only needs to know on which device it is, but also which internal device
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SDS id it has. A pro of this technique is that the SDS can be shared between Tasks that are
not defined in the same scope because they are separated. A con of this implementation is that
the mechanisms for implementing SDSs have to be more complex, they have to keep track of the
devices containing or sharing an SDS. Moreover, when the SDS is updated, all attached devices
must be updated which requires some extra work.

8.1.5 Robustness
Reconnect with lost devices: The robustness of the system can be greatly improved. De-
vices that lose connection are not well supported in the current system. The device will stop
functioning and has to be emptied for a reconnect. Tasks residing on a device that disconnected
should be kept on the server to allow a swift reconnect and restoration of the Tasks. This holds
the same for the client software. The client drops all existing Tasks on a shutdown request. An
extra specialization of the shutdown could be added that drops the connection but keeps the
Tasks in memory. During the downtime the Tasks can still be executed but publications need
to be delayed. If the same server connects to the client the delayed publications can be sent
anyways.

Reverse Task sending: Furthermore, devices could send their current Tasks back to the
server to synchronize it. This allows interchanging servers without interrupting the client. Al-
lowing the client to send Tasks to the server is something to handle with care because it can
easily cause high bandwidth usage.

8.2 Conclusion
This thesis introduces a novel system for adding IoT functionality to the TOP implementation
iTasks. A new view for the existing mTask-EDSL has been created which compiles the pro-
gram into bytecode that can be interpreted by a client. Clients have been written for several
microcontrollers and consumer architectures which can be connected through various means of
communication such as serial port, wifi and wired network communication. The bytecode on the
devices is interpreted using a stack machine and provides the programmer with interfaces to the
peripherals. The semantics for mTask try to resemble the iTasks semantics as close as possible.

The host language has a proven efficient compiler and code generator. The compilation is
linear in the amount of instructions generated and is therefore also scalable. Moreover, compiling
Tasks is fast because it is nothing more than running some functions native to the host language
and there is no intermediate AST.

The dynamic nature of the client allows the microcontroller to be programmed once and used
many times. The program memory of microcontrollers often guarantees around 10.000 write or
upload cycles and therefore existing techniques such as generating C code are not suitable for
dynamic Task environments. The dynamic nature also allows the programmer to design fail-over
mechanisms. When a device is assigned a Task but another device suddenly becomes unusable,
the iTasks system can reassign a new mTask-Task to another device that is also suitable for
running the Task without needing to recompile the code. It also showed that adding peripherals
is not a time consuming task and does not even requires recompilation of clients not having the
peripheral.

The new functionality extends the reach of iTasks by adding IoT functionality and allowing
devices to run mTask-Tasks. With this extension, a programmer can create an entire IoT system
from one source that reaches all layers of the IoT architecture. However, this does not limit
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the applications and makes them static. Components can be updated individually without
causing integration problems. Devices can be repurposed just by sending new Tasks to it. Most
importantly, it gives an insight in the possibilities of adding IoT to TOP programs.
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Appendix A

Communication Protocol

General Message Format
Messages are delimited by newlines to make processing by line based devices easier. Message
exchanges have a Request and Response header. The Request header means that the server
is sending to the client. The Response header means that the client is sending to the server.
In some cases either the Request or Response is empty. This means that the message is not
acknowledged or responded upon. Multibyte values are interpreted as Most Significant Byte
(MSB) first integers.

Handshake

Request
byte value
1 ’c’

Response
byte value
1 ’c’
2 Peripheral bitmask
3,4 Bytes of memory
5,6 Size of the stack
7 Number of analog pins
8 Number of digital pins

Table A.1: Send a device specification
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mTask-Tasks

Request
byte value
1 ’t’
2,3 interval or interrupt
4,5 length (n)
6 to n+6 bytecode

Response
byte value
1 ’t’
2,3 Task id

(a) Send a Task

Request
byte meaning
1 ’d’
2,3 Task id

Response
byte value
1 ’d’
2,3 Task id

(b) Delete a Task

Table A.2: Message protocol for exchanging Tasks

SDSs

Request
byte meaning
1 ’s’
2,3 id
4,5 value

Response
byte meaning
1 ’s’
2,3 id

(a) Send an SDS speci-
fication

Response
byte value
1 ’a’
2,3 SDS id

Request
byte value
1 ’a’
2,3 SDS id

(b) Delete an SDS

Request
byte meaning
1 ’u’
2,3 sdsid
4,5 value

Response

(c) SDS update

Response

Request
byte value
1 ’p’
2,3 SDS id
4,5 value

(d) SDS publish

Table A.3: Message protocol for exchanging SDSs
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Appendix B

Device Client Interface

# ifndef INTERFACE_H
# define INTERFACE_H

#ifdef __cplusplus
extern "C" {
#endif

# include <stdbool .h>
# include <stdint .h>
# include <stdarg .h>

#ifdef LINUX
# define APINS 128
# define DPINS 128
# define STACKSIZE 1024
# define MEMSIZE 1024
# define HAVELED 1
# define HAVEHB 1
#elif defined STM
...
#endif

/* Communication */
bool input_available (void);
uint8_t read_byte (void);
void write_byte ( uint8_t b);

/* Analog and digital pins */
#if DPINS > 0
void write_dpin ( uint8_t i, bool b);
bool read_dpin ( uint8_t i);
#endif
#if APINS > 0
void write_apin ( uint8_t i, uint8_t a);
uint8_t read_apin ( uint8_t i);
#endif

/* UserLED */
#if HAVELED == 1
void led_on ( uint8_t i);
void led_off ( uint8_t i);
#endif
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#if HAVEHB == 1
uint16_t get_hb ();
bool valid_hb ();
uint16_t get_spo2 ();
bool valid_spo2 ();
#endif

/* Delay and communication */
unsigned long getmillis (void);
void msdelay ( unsigned long ms);

/* Auxilliary */
void real_setup (void);
void real_debug (char *fmt , ...);
void pdie(char *s);
void die(char *fmt , ...);
void reset(void);

#ifdef __cplusplus
}
#endif
#endif

Listing B.1: Full device interface
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Glossary

Arduino is a cheap and popular microcontroller that is widely used for rapid prototyping.

Clean is a statically typed pure lazy functional programming language based on graph rewriting.

Firmata is standardized protocol for communicating with microcontrollers.

Haskell is a statically typed pure lazy functional programming language.

Ivory is a type-safe EDSL designed to generate C-code for high-assurance low-level systems.

Javascript is an imperative programming language designed to run in web browsers.

LUA is an interpreted scripting language famous for having a very lightweight interpreter that
is easy to port..

Python is an interpreted object oriented scripting language. Variants exist that are suitable to
run on microcontrollers such as micropython.

Task is the basic building block of a TOP system.

iTasks is a TOP implementation written as an EDSL in the Clean programming language.

mTask is an abstraction for Tasks living on IoT devices. Moreover, it is the name of an EDSL.

C++ is low-level imperative and object-oriented programming language suitable for embedded
devices based on C.

C is low-level imperative programming language suitable for embedded devices.

SAPL is an intermediate purely functional programming language.

mbed is a programming framework for microcontrollers..

ADT Algebraic Datatype.

API Application Programming Interface.

ARM Acorn RISC Machine.

AST Abstract Syntax Tree.

EDSL Embedded Domain Specific Language.

GADT Generalized Algebraic Data type.
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GLONASS Global Navigation Satellite System.

GNSS Global Navigation Satellite System.

GPIO General-Purpose Input/Output.

GPS Global Positioning System.

IDE Integrated Development Environment.

IoT Internet of Things.

JSON JavaScript Object Notation.

LCD Liquid Crystal Display.

LED Lighting Emitting Diode.

MSB Most Significant Byte.

RFID Radio-Frequency Identification.

RWST Reader Writer State Transformer Monad.

SDS Shared Data Source.

TCP Transmission Control Protocol.

TOP Task Oriented Programming.
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