N)
Py Shallowly Embedded Functions

Benedikt M. Rips
Radboud University
Nijmegen, Netherlands
benedikt.rips@ru.nl

Mart Lubbers
Radboud University
Nijmegen, Netherlands
mart@cs.ru.nl

Abstract

A domain-specific language, DSL is tailored to a specific application
domain to facilitate the production and maintenance of programs.
Functions add an important abstraction and repetition mechanism
to DSLs, just as for any other programming language. For the evalu-
ation of embedded DSLs one can use functions in the host language
for this purpose. However, the automatic replacement of host func-
tion calls by their body is undesirable in other interpretations of
the DSL, like pretty printing and code generation, especially for
recursive DSL functions.

In this paper, we offer an overview of the options for defin-
ing functions in an embedded DSL, in particular tagless-final, or
class-based shallow embedding style. These functions are type safe,
require minimal syntactic overhead, and are suitable for multiple
interpretations of terms in the DSL.

CCS Concepts

- Software and its engineering — Domain specific languages;
Automated static analysis; Functional languages; Recursion.

ACM Reference Format:

Benedikt M. Rips, Niek Janssen, Mart Lubbers, and Pieter Koopman. 2025.
Shallowly Embedded Functions. In Proceedings of the 27th International
Symposium on Principles and Practice of Declarative Programming (PPDP ’25),
September 10-11, 2025, Rende, Italy. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3756907.3756923

1 Introduction

Domain-Specific Languages, DSLs, help to develop and maintain
software for particular application domains. Embedded DSLs, so-
called eDSLs, are implemented as libraries in host programming
languages. Preferably, an eDSL supports multiple interpretations,
for example printing, optimization, or evaluation. It is desirable that
the type safety of the host language is also available in the eDSL.
Embedding saves us from making a standalone tool chain with a
parser, type checker, etc. for the DSL, as they are inherited from
the host language. Typically, the host language becomes a powerful
generator of eDSL programs [19]. Though some trade-offs have to

This work is licensed under a Creative Commons Attribution 4.0 International License.
PPDP °25, Rende, Italy

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2085-7/25/09

https://doi.org/10.1145/3756907.3756923

Niek Janssen
Radboud University
Nijmegen, Netherlands
niek janssen3@ru.nl

Pieter Koopman
Radboud University
Nijmegen, Netherlands
pieter@cs.ru.nl

be made for the correct typing and sharing of identifiers such as
function names and when using them in function application.

Functional programming languages have shown to be well-suited
host languages for eDSLs. This has been recognized long ago by Hu-
dak [12] and its large number of successors. Moreover, recent exten-
sions of functional programming languages increase their quality
as host languages for eDSLs. For example, the ability to define infix
operators, generalized algebraic data types, multi-parameter type
(constructor) classes, and higher-order/rank polymorphic function
and data types.

In this paper, we focus on the definition of functions in eDSLs.
Basically, functions are handled as identifiers with a fancy type. In
a naive implementation, identifiers are just a variable tag, either a
constructor or a function, and some identifier. In that approach, the
host language compiler cannot check that the variable is properly
defined nor that the type is used correctly. On the other hand, if we
represent them by functions or function arguments in the host lan-
guage, the compiler can check variables. This is an old idea known
as Higher-Order Abstract Syntax, HOAS [30]. We use this concept
to define functions in DSLs and thus reducing syntactic overhead
and improving type safety. We parameterize the type of DSL expres-
sions to mirror the type of the equivalent host language expression.
Hereby, the host language’s type system not only imposes type
safety onto DSL expressions but also gives us type inference.

1.1 Requirements for DSL Functions

We would like embedded functions to fulfil certain requirements.
First, we want to be able to control the types of the bound expres-
sions if necessary, even for polymorphic, overloaded, and higher-
order functions. Also, we would like to have the possibility to set
bounds on the number of arguments of the function. This comes in
handy when e.g. a compiler of the eDSL needs to store thunks in
some finite memory location or to disallow partial function appli-
cations. Similarly, we want to choose in the eDSL design between
first-order and higher-order functions. Second, function application
in the DSL should naturally resemble function application in the
host language. It preferably does not require an explicit application
construct. That is, we prefer to write f x over ap f x in our eDSL
to minimize the semantic friction and syntactic overhead without
losing control over the definition and callsites. Third, expressions
shall be sharable in a manner that is accessible to the interpreta-
tions such that the implementation of sharing can be specific to
the interpretation at hand. Fourth, embedded functions should be

https://orcid.org/0009-0004-9943-7997
https://orcid.org/0009-0003-7348-7788
https://orcid.org/0000-0002-4015-4878
https://orcid.org/0000-0002-3688-0957
https://doi.org/10.1145/3756907.3756923
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3756907.3756923
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3756907.3756923&domain=pdf&date_stamp=2025-12-13

PPDP ’25, September 10-11, 2025, Rende, Italy

able to call themselves and each other. We require at least recur-
sion, but preferably mutual recursion. Finally, we prefer to have
single abstraction for binding, sharing, and recursion to make DSL
expressions concise and uniform.

1.2 Research Contribution

Our work regards DSL binders represented in HOAS. The overall
contribution is fourfold.

First, we present a DSL binder that is capable of defining func-
tions of arbitrary arity (Section 3.2). We do so by providing a binder
that is polymorphic in the type of its bound expression while still
allowing DSL-level functions only and suitable type class instances
for the arrow type. For the sake of completeness, we put our ideas
in the context of the well-known technique for DSL binders for
functions of fixed arity.

Second, we discuss DSL binders for mutually-recursive expres-
sions (Section 3.3). We start out with an illustration of a naive
approach that does not require additional syntax but only enables
exposure of one of the multiple mutually-recursive expressions. To
remedy this disadvantage, we extend the existing binders to tuples
such that multiple expressions are bound simultaneously.

Third, we demonstrate a technique to define standalone DSL
functions (Section 4). That is, instead of writing a closed DSL ex-
pression in which every DSL function is defined locally, we want to
write a standalone DSL function that may be reused across multiple
DSL expressions. This technique enables code deduplication and
the implementation of libraries containing reusable DSL functions.

Last, to round things up, we list auxiliary techniques of which
some are known from folklore and come in handy for certain DSLs.
This includes type annotations for DSL expressions, named function
arguments through records, and the ability to prohibit nesting of
binders (Section 5).

Most code is written in the pure functional programming lan-
guage Clean [5,32].1 Yet, it can be translated to Haskell in a straight-
forward manner. In Section 3.2.3 and 5.3, we used Haskell instead
of Clean due to some language features that are available in GHC
but not in Clean.

2 The Example DSL

We demonstrate our ideas with an example DSL that is iteratively
enriched by new constructs. The DSL contains basic functionality
for lifting of values, arithmetics, boolean operations, comparisons,
and conditionals.

To implement such a DSL, there are two main flavours of embed-
ding techniques, namely deep embedding and shallow embedding.
They are closely related and can be transformed isomorphically
into each other [1, 10]. In deep embedding, DSL constructs are
represented as data types in the host language and interpretations
are functions over these data types. In shallow embedding, it is
exactly reversed: interpretations on the language are data types
and language constructs are functions over these data types.

This paper focusses on a class-based shallow embedding. How-
ever, in the source code artefact, we also provide a deep embedded
variant using generalized ADTs [29].

!All code is available as an artefact [23]. A concise guide to Clean for Haskell program-
mers is found in [22].

Benedikt M. Rips, Niek Janssen, Mart Lubbers, and Pieter Koopman

We start with classes for basic operators. As in any class-based
embedding, the class variable v indicates the interpretation of the
DSL. The argument of v indicates the type of the DSL expression,
like in a GADT. Infix operators are used with the usual binding
power and associativity to beautify the syntax. We add a dot to the
operator name whenever required to avoid name clashes with the
host language.?

class lit v :: a — v a | toString a

class arith v where

(+.) infix1 6 :: (va) (va) > val| +a
(-.) infix1 6 :: (va) (va) - val| -a
(*.) infixl1 7 :: (va) (va) - val *a
(/.) infix1 7 :: (va) (va) - val/a

class bool v where
(&&.) infixr 3 :: (v Bool) (v Bool) — v Bool
(11.) infixr 3 :: (v Bool) (v Bool) — v Bool
class comp v where
(==.) infix 4 :: (v a) (va) — v Bool | == a
(<.) infix 4 :: (v a) (va) — vBool | <a

class If v :: (v Bool) (va) (va) — v a

The class variable v and its argument are also used to make
the embedding sound. The latter guarantees that the type of DSL
operators and its arguments match, e.g. that a conjunction is only
used on Booleans. By making the type ascribed to a DSL term
polymorphic in the interpretation v, one prevents inspection of
terms, hereby ruling out exotic terms.

For code deduplication, sharing, and recursion, it seems natural
to use the host language’s recursive let binder. Yet, since it sits
on the host level, we only reap its benefits during evaluation. For
interpretations like printing, whose output leaves the host language,
the bound expressions are not shared, and recursive expressions
would lead to an infinite output. Thus, we add DSL-level binders
to delegate sharing and fixation to the interpretation at hand [27].
Specifically, we add a cons binder for constants and a fun1 binder
for single argument functions.

class cons v :: ((v a) — In (v a) (vb)) > vb
class funl v :: (((va) - vb) > In((va) - vb) (vc)) - vec

:: In a b = (In) infix @ a b // a prettier tuple

The fun1 binder enables defining DSL unary functions. Compared
to HOAS, in which one typically has functions of type v (a —
b), in our approach functions have the type (v a) — v b, hence
have the advantage that we need neither an explicit apply nor an
explicit variable construct. The fun1 binder also permits recursion
due to the function name being in scope inside its body. While it is
possible to implement recursion with a fixed-point combinator [3],
we chose a different approach here since we want our binder to
support binding, sharing, and recursion, as laid out in Section 1.1.
The following definition of the factorial function ex1_v2 serves as
an example for a recursive function.? There is no higher meaning to
the trivial definition of one, it simply serves as an illustration of the
cons function. The argument of ex1_v2 is the value of the argument

ZFunctions in Clean have a fixed arity, so arguments are parenthesized when needed [32,
§3.7].
3In Clean, —, = and . can be used for lambdas, we pick according to our taste.

Shallowly Embedded Functions

of the factorial function, i.e. the value is inlined. This illustrates
how the host language and the eDSL mix. For recursive functions,
like fac, it is essential that we combine the function definition and
its application in a single construct. The defined function is in scope
of its own body as well as its applications.

ex1_v2 n =
cons Aone = lit 1 In
funl Afac = (An. If (n ==. one) one (n *. fac (n -. one))) In
fac (lit n)

Currently, the fun1 construct allows first-order functions with
one argument only. In Section 3, we get rid of this limitation through
a generalization over the type of the bound expressions.

2.1 Evaluation

Evaluation of DSL expressions takes place in a strict identity monad
E and is completely standard. The definition of E and its relevant
class instances are listed in Appendix A.

For the evaluation of the cons and fun1 class, we uniformly sub-
stitute the term’s body for all applications using a cyclic definition.
The effectiveness of this technique depends crucially on lazy evalu-
ation.

instance lit E where lit a = pure a
instance arith E where

(+.) xy = (+) <> x <x>y

) xy=()<$>x<x>y

instance cons E where cons f = let (val In body) = f val in body

instance funl E where funl f = let (val In body) = f val in body

In shallow embedding, the interpretation is embedded in the data
type. Hence, evaluating expressions in our DSL is a matter of un-
packing the data type E, as seen in eval.

eval :: (Ea) — a
eval (E a) = a

For example, the evaluation eval (ex1_v2 4) of a call to the factorial
function produces the value 24.

2.2 Printing

The printing interpretation for this DSL is slightly more complex.
We use the tooling shown in Appendix B that uses a reader writer
state monad, called RWS. Here, the log of the writer is a list of strings,
the state contains fresh identifiers and the environment of the reader
is not used. To generate concise prints we print literals without 1it
keyword and omit the dot suffix of infix operators. For brevity in
presentation, we do not attempt to print minimal parentheses nor
strive for an efficient implementation. Printing of the other basic
classes is similar and shown in Appendix B.

instance 1lit Print where lit a = P (tell [toString a])
instance arith Print where
(+.) x y = printBin x y "+"
(-.) x y = printBin x y "-"
printBin x y op = P (tell ["("] >>| runPrint x >>| tell [op]
> | runPrint y > | tell [")"])

PPDP ’25, September 10-11, 2025, Rende, Italy

To print the binders, we use an idea similar to the previous section.
For every bound expression, we generate a fresh identifier. For
brevity, we reuse the printing instance for the more general binders
that we introduce in Section 3 and 3.2 below. In addition, it shows
that this is indeed a special case of the more general binders.

instance cons Print where cons f = def f

instance funl Print where funl f = funa f

Evaluating printMain (ex1_v2 4) to print an application of the
factorial function produces:

def vo =1 In
def vl = Av2 — (If (v2==.v0@)
Vo
(v2x(v1 (v2-v0)))) In
(v1 4)

Note that, although we use a single cons and fun1 definition in this
example, these constructs can be nested arbitrarily. Each of these
binders yields a valid value of type v a.

3 Handling Arity and Recursion

We now extend the above binders in two directions: the arity of
functions and mutual recursion. Regarding arity, we demonstrate a
technique that limits the functions to particular arities and another
technique that enables functions of arbitrary arity.

3.1 Fixed Arity

The cons and fun1 binders in the DSL above have no argument or
a single argument respectively. We generalize both binders to a
single unified binder by replacing the argument type v a of funi
by a more general a type variable which is exposed as a type class
argument.

class funa av :: ((@ > vb) >In(a— (vb) (vc)) »ve

This allows us to make instances of this class for tuples of varying
size to resemble functions of varying arity. By making a funa ()
v instance for the unit type, we enable C-style functions without
arguments. Note that this does not imply that tuples become part
of the types of the DSL. The tuples sit in the host language and are
just a way to denote multiple arguments in the DSL. This technique
is useful to limit the number of arguments.

Consider for example the Ackermann function, a function with
two arguments. It is defined as ex2.

ex2 = cons Azero = lit @ In

cons Aone = lit 1 In
funa Aack = (A(m,n)—
If (m ==. zero) (n +. one)
(If (n ==. zero) (ack (m -. one, one))

(ack (m -. one, ack (m, n -. one))))) In
ack (lit 2, lit 2)

“Unfortunately, the names given by the user of the DSL are not accessible without
template metaprogramming, see also Section 4.

5The only consequence is that the printed name of all definitions becomes the name
of the most general case. We do not consider that a problem since, whenever required,
we make this name an additional parameter of a helper function that is called in the
actual print class.

PPDP ’25, September 10-11, 2025, Rende, Italy

The downside of this approach is that one needs to list funa a v
instances for all types a that are bound inside the expression. To
reduce the verbosity, you may use the quantified constraints [4]
type system extension to aggregate these constraints.

3.1.1 Evaluation. Evaluation is identical to the instances shown
above. We implement it in terms of the most general binder def
(Section 3.2) as it is just a specialization.

instance funa a E where funa f = def f

Evaluating the Ackermann program shown above produces 7 as
expected.

3.1.2 Printing. Again, printing the binder is more work. The in-
stance for (Print a) Print is equal to the fun1 Print instance. In
the same style, we make an instance for () Print to allow func-
tions with zero arguments, or a unit argument to be more precise.
We showecase the instance for a pair, as used in the example ex2
above. The difference to the single argument function is that we
generate two symbolic arguments for the body and handle a tuple
of arguments in applications.

instance funa (Print a,Print b) Print where
funa f = P (fresh >= Av — fresh >= Aa — fresh >= b —

let (body In main) =
f (A(c,d). P (tell ["(",v," ("] >| runPrint ¢ > |
tell [", "1 >>| runPrint d >>| tell [")"])) in

tell ["funa ",v," =\\(",a,",",b,") = "] >|

runPrint (body (P (tell [al),P (tell [b]))) >>|

tell [" In An"] >>| runPrint main)

This prints our Ackermann function example ex2 as:

def vo =0 In
def vi =1 In
def v2 = A(v3,v4) — (If (v3==.v0)
(v4+v1)
(If (v4==.v0)
(v2 ((v3-v1), v1))
(v2 ((v3-v1), (v2 (v3, (v4-v1))))))) In
2 (2, 2))

3.2 Arbitrary Arity

By yet another generalization, we define a binder for functions of
arbitrary arity that can also be curried, i.e. there is no need to pack
the arguments in a tuple. Furthermore, this binder binds not only
functions but also constants. Again, we replace a — v b in the
definition by a more general a type variable and supply appropriate
instances.

class def av :: (a - Ina(vb) - vb

We illustrate the power of this approach by an implementation of
the algorithm that computes powers in logarithmic time.

ex3 = def Aone = 1lit 1 In
def Atwo = lit 2 In
def Aodd = (An.
If (n ==. one) (lit True)
(If (n <. one) (lit False) (odd (n -. two)))) In
def Apow = (Ax n.
If (n =. 1lit Q)

Benedikt M. Rips, Niek Janssen, Mart Lubbers, and Pieter Koopman

one
(If (odd n)
(x x. pow x (n -. one))
(def Ay. pow x (n /. two) Iny *. y))) In
pow (lit 3) (lit 5)

The symbols one and two denote constants, odd is function of a single
argument, and pow is a function of two arguments. Also observe
that the functions are recursive.

The def construct is in principle also general enough to allow
binding higher-order functions. However, their availability depends
on the interpretation v. Evaluation for example handles higher-
order functions without any additional machinery since they are
a core feature of the host language. In contrast, the printing of
higher-order functions remains future work.

3.2.1 Evaluation. The evaluation again is general for any definition
of an arbitrary type a.

instance def a E where def f = let (body In exp) = f body in exp

Defining such an instance of this class allows more than we want. It
works for any type a. By defining more specific instances for various
instance of a instead of this very general instance, we control the
allowed arguments in detail.

Evaluating expression eval ex3 yields the desired value 243.

3.2.2 Printing. Printing of the 1lit and arith classes is already
defined in Section 2.2. That implementation is also used with the
more general definitions. Here we define the Print instance of our
most general definition class def.

The class def works for definitions with an arbitrary number of
arguments. In the applied function occurrences, we print a gener-
ated name for the functions as well as the actual arguments. To
print the body of the expression, we supply functions that print
variable names as arguments to the defined function. The helper
class defType does exactly that for various types of arguments. The
Boolean argument of actArg indicated whether a closing parenthe-
sis is needed.

class defType a where
actArg :: Bool (Print ¢) — a

formArg :: a — Print ¢

First, we generate a fresh name n for the definition. Next, the defin-
ing function f is applied to the function that prints the actual ar-
guments. Initially, this prints just the name of the function by P
(tell [n]). The actArg adds the actual arguments one by one. To
print the function body, we supply the formal arguments one by
one with formArg. Finally, we only have to add some bookkeeping
code to announce that there is definition and print the definition to
finally print the body.

instance def a Print | defType a where
def f = P (fresh >= An.
let (a In b) = f (actArg False (P (tell [n]))) in

incr >>| tell ["def ",n," = "] >| runPrint (formArg a) >>|
tell [" In"] >>| decr > | nl > | runPrint b)

The basic case for the class defType covers the case that there
are no more arguments. In this situation, the object to be printed
has type Print a. For the actual argument actArg, we just run the

Shallowly Embedded Functions

given printer p and add a closing parenthesis whenever the Boolean
argument b indicates that this is required. For the formal argument
formArg, we just run the given printer.®

instance defType (Print a) where
actArg b p | b =P (runPrint p >| tell ['")"])
| otherwise = P (runPrint p)
formArg p = P (runPrint p)

The instance of defType for (Print a)—b handles the case for a
single function argument. Recursive calls handle multiple argu-
ments one by one. The instance for an actual argument takes that
argument as argument and prints it after the accumulator f. The
function paren prints an open parenthesis whenever needed and
calls actArg recursively. For the formal argument, a fresh argument
variable v is generated. The function yields a printer that produces
the corresponding lambda definition and provides the printer P
(tell [v]) as argument to the function.

instance defType ((Print a)—b) | defType b where
actArg b f = Ax.
paren b (runPrint f >>| tell [" "] >>| runPrint x)
formArg f =P (fresh >=Av — tell ["\\",v," = "] >|
runPrint (formArg (f (P (tell [vI)))))

paren :: Bool (PrintM ()) — a | defType a
paren b f = actArg True (P (if b f (tell ["("] >| f)))

This prints our power function example ex3 as:

def vo =1 In
def v1 =2 In
def v2 = Av3 — (If (v3==.v0)
True
(If (v3<.v0)
False
(v2 (v3-v1)))) In
def v4 = Av5 — Ave — (If (v6==.0)
vo
(If (v2 v6)
(v5x(v4 v5 (v6-v0)))
def v7 = (v4 v5 (v6/v1)) In
(v7*v7))) In
(v4 3 5)

3.2.3 Restricting the Bindable Expressions. While the liberal def
allows binding functions of arbitrary arity, we have no guarantees
that these functions are from the object language. So one can use it
to define host language constants and functions like in the following
example:

one = def Aone =1 In lit one

Instead, we would like to restrict the type of the bindable expres-
sions to liftable types, i.e., types with a shape like v a, (v a) (v
b) - v c,and ((v a) - v b) (v a) — v b. Todo so, we use an

®In both cases the body is P (runPrint p) instead of just p to make the required
type transition from Print atoPrint c.

PPDP ’25, September 10-11, 2025, Rende, Italy

empty type class with selected instances to enumerate all types
that we consider lifted.”

class Lift v a
instance {-# INCOHERENT #-} (Lift v a, Lift v b) = Lift v (a — b)
instance {-# INCOHERENT #-] Lift v (v a)

Since the instance resolution only works as soon as the type vari-
able v is instantiated, we get overlapping instances, regardless of
any overlap pragmas. Hence, we have to mark these instances as
incoherent and mention the recursive case first so that the instance
resolution matches the arrow type whenever applicable.?

With small changes to the instances given above, we are also
able to alter the set of lifted types. For example, to not allow any
type but only integers and Booleans to be lifted, we would have to
replace the Lift v (v a) instance by a Lift v (v Int) andalLift
v (v Bool) instance. Or, to disallow higher-order functions, the (
Lift v a, Lift v b) = Lift v (a — b) instance would have to
be replaced by aLift v b = Lift v (v a — b) instance.

With this machinery in place, we restrict the bindable expres-
sions of the def combinator by constraining the type of the bound
expressions to the Lift type class.

class Def v a where
def :: Lift va= (a - aIn"vb) > vb

Note that this idea is that it does not require any changes on the
use site because it is merely an artificial restriction onto the types.
Furthermore, declaring types as lifted is as easy as adding another
instance of the Lift class.

3.3 Mutual Recursion

With the current eDSL binders, we can define mutually-recursive
expressions as long as we only need to expose one of them. The
trick is to define the expression that shall not be exposed inside the
body of the expression that shall be exposed. For example, the even
function is defined mutually-recursively through the odd function.

isSevenEven =
def Aone = lit 1 In
def AisZero = (==.) (lit @) In
def AisOne = (==.) one In
def Aeven =
def Aodd = An. If (isZero n)
(lit False)
(If (isOne n) (1lit True) (even (n -. one))
In An. If (isZero n)
(lit True)
(If (isOne n) (1lit False) (odd (n -. one)))
In even (lit 7)

Compilation of such expressions requires advanced techniques like
lambda lifting or closure conversion due to the nested binders. Also,
being able to expose only one of the mutually-recursive expressions
is a significant drawback.

7Since the type class that we want to define does not have any members and its
instances are incoherent, an implementation in Clean would involve a significant
amount of boilerplate code. Hence, we give a definition in Haskell.

8See §6.8.8.5 of the GHC documentation: https://ghc.gitlab.haskell.org/ghc/doc/users_
guide/exts/instances.html.

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/instances.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/instances.html

PPDP ’25, September 10-11, 2025, Rende, Italy

Hence, we demonstrate a technique that allows to expose mul-
tiple mutually-recursive expressions on the same level. The basic
idea is to define not only one expression but a tuple of expressions,
so that our previous example of the mutually-recursive even and
odd functions becomes:

evenOdd =
def Aone = lit 1 In
def AisZero = (An. n ==. 1it @) In

def AisOne = (==.) one In
def A(odd,even) =
(An. If (isZero n) (lit False)
(If (isOne n) (lit True) (even (n -. one)))
, An. If (isZero n) (1lit True)
(If (isOne n) (lit False) (odd (n -. one)))
)
In odd (lit 7)

Intuitively, we expect the evaluation of a tuple of expressions to
be already handled by the generic def a E instance. Even with the
type of bound expressions restricted using the Lift type class, we
expect it to work by declaring pairs as lifted types through a simple
(Lift v a, Lift v b) = Lift v (a, b) instance. However, since
the (-, -) = --- binder is strict in the tuple constructor, naive
evaluation of a pair of binders leads to an infinite recursion.” Hence,
we need to perform lazy pattern matching on the tuple, either at
use site or at fixation site. To not put any burden onto the user, we
change the fixation site by providing an explicit evaluation instance
for tuples.

instance def (a,b) E where

def f = let (pair In exp) = f (fst pair, snd pair) in exp

To print mutual recursive definitions, a tuple which prints the
names is given as argument to the defining function. The obtained
bodies and the main expression are printed in order. We just have
to add some text to distinguish the parts.

instance def (a,b) Print | defType a & defType b where
def f = P (fresh >= An. fresh >= Am.
let ((ela, elb) In e2) = f
(actArg False (P (tell [n]))
, actArg False (P (tell [m]))) in
incr > | tell ["def (",n,",",m,") ="1>>| incr >| nl > |
tell ["("] >>| runPrint (formArg ela) >>| nl > |
tell [","] >>| runPrint (formArg elb) >>| tell [") In "] > |
decr > | decr >>| nl >>| incr > | runPrint e2 >>| decr)

While we covered mutual recursion for two expressions only, it
should be noted that this approach scales to three or more mutually-
recursive expressions analogously.

4 Standalone Functions

Embedded function definitions with multiple interpretations as
introduced above work fine. By choosing the appropriate variant,
we determine what we want to allow in the DSL. Whenever desired,
we extend the DSL with new operators or data types as well as
functions with a different number or type of arguments.

9To delve into the problem, transform the HOAS binder into an open recursion style
and then expand its fixation by means of equational reasoning.

Benedikt M. Rips, Niek Janssen, Mart Lubbers, and Pieter Koopman

There are three drawbacks for this approach. First, it requires
that the entire DSL program is defined as a single block of code.
This is fine for small programs, but for large programs this can
hamper the readability. Second, it seems to obstruct the reuse of
code. Finally, carefully designed function names are lost in showing
the function definitions.

It is possible to make reusable functions in the current framework.
We make a global function definition for each embedded definition
we want to reuse. We start by adding an argument for each other
definition used, like definition one in the function fac below. Next,
we add an argument for the recursive calls of the function itself.!?
This is exactly equal to the use of a fixed-point combinator in A-
calculus. Finally, we have the arguments of the embedded function,
either as normal function arguments or as a lambda function.

The example ex4 shows how this looks for a factorial definition.

one _ = lit 1
fac one f n = If (n ==. lit @) one (n x. f (n -. one))

ex4 = def AoneF = one oneF In
def Af = fac oneF f In f (lit 4)

This evaluates and prints as if we had the definitions inlined as
above. This approach enables the reuse of the functions one and fac.
An alternative approach is to define the functions as continuation
passing style. This method and the method before result in very
complex types become more complex and all library functions still
need to be declared explicitly.

withOne f = def Aone — 1it 1 In f one

withFac f = withOne Aone —
def Afac = (An. If (n ==. lit @) one (n x. fac (n -. one)))
In f fac

ex5 = withFac Afac — fac (lit 4)

4.1 Named Functions

A more radical approach uses only named definitions. These defini-
tions have a user-defined ID that must be unique. This ID solves the
lost names’ problem in printing and is an identifier to spot whether
we have encountered this definition before. The equivalent of the
definitions from Section 3 becomes the classes fun for function with
an arbitrary argument and def for constant definitions.

class fun a v :: ID (a—v b) — a—=v b

class term v :: ID (vb) - v b

:: ID :== String

To specify concise type class constraints, we gather all relevant
type classes in funDef. The type parameters are the interpretation
v and the argument type a in function definitions.

class funDef v a | lit, arith, bool, comp, If v

& term v & fun (v a) v

The even and odd example below shows that this allows mutual
recursion without the need to define the functions simultaneously
as in Section 3.3.

OTechnically, this is not required for non-recursive definitions like constants. For
uniformity and simplicity, we add this argument always in our examples.

Shallowly Embedded Functions

Zero :: (v Int) | lit, term v
Zero = term "zero" (1lit Q)

one :: (v Int) | lit, term v
One = term "one" (1lit 1)

even :: ((v Int)—v Bool) | funDef v Int
even = fun "even" An. If (n ==. Zero) (lit True) (odd (n -. One))

odd :: ((v Int)—v Bool) | funDef v Int
odd = fun "odd " An. If (n ==. Zero) (lit False) (even (n -. One))

4.2 Evaluation

The evaluation is again straightforward, we just replace each defi-
nition by the body. The ID is not needed in this interpretation and
stripped.

instance fun a E where fun i a=a

instance term E where term i a = a

The expression eval (even (lit 5)) evaluates to False.

4.3 Printing

For the printing interpretation, we have to work a little harder.
Here, we require the full tooling introduced in Appendix B. The
state contains a mapping from ID to output of type [String]. Each
time we encounter a new definition, we check this mapping for
occurrence of the ID. When we have seen the definition before, we
just use the ID to indicate a call to this definition. When the defini-
tion is not known, we print it like before and store the output of
the writer monad at the position of the ID in the mapping. After we
are done with printing, we collect all definitions from the mapping
with printAll. Like in Section 3, we make instances for functions
with a single argument as well as for tuples containing multiple
arguments.

For simplicity, we assume that functions are not nested. One
can handle the printing of nested functions for instance like their
code generation by lifting all functions to the top level (see Sec-
tion 6). We reuse the class defType from Section 3.2.2 for the type
specific printing details. We only show the instances for definitions
without argument, functions with a single argument and a tuple as
argument.

instance term Print where
term name f = P (printDef "term" name f >>| tell [name])
instance fun (Print a) Print where
fun name f = actArg False
(P (printDef "fun" name (formArg f) >>| tell [namel))
instance fun (Print a, Print b) Print where
fun name f = actArg False
(P (printDef "fun" name (formArg f) >>| tell [namel))

Both instances use the same helper function to add a definition to
the mapping when this is needed.

printDef :: String ID a — PrintM () | defType a
printDef kind name f = gets (As — 'M'.get name s.defs)
>= Amd — case md of

?Just _ = pure () // definition found

PPDP ’25, September 10-11, 2025, Rende, Italy

?None = censor (A_—[]) (listen runDefinition) >>= A(_,def)—
modify (As — {s & defs = 'M'.put name def s.defs})
where
runDefinition = modify (As—{s & defs = 'M'.put name [] s.defs})
>> | enter name // enter to context
> | tell [kind," ",name," = "] >>| runPrint (formArg f)
>> | leave

To add some resilience to the system, we could add the compiler-
generated name of the current function to the ID. This yields unique
names when the user of the DSL accidentally reuses an identifier,
but generates ugly function names. If available, a template metapro-
gramming system such as Template Haskell [36] can be used to
generate unique identifiers for functions. Printing our example
printAll (even (lit 5)) produces:

fun even = Av@ — (If (v@==.zero) True (odd (v@-one)))
fun odd = Avl — (If (vi==.zero) False (even (vi-one)))
term one =1

term zero = @

main = (even 5)

It is no silver bullet because DSL functions can be constructed
on the fly using the host language as a macro language [19]. For
example, the times function below unrolls a multiplication function
in a sequence of additions by using the host language. Using just
the name, location or generated identifier per function in the host
language is not enough. This is mitigated by incorporating the
arguments in the identifier, as done below.

times x = def ("times" ++ toString x)
Ay — foldr (+.) (lit @) (repeatn x y)

5 Auxiliary Techniques

5.1 Indicating Types

The host language compiler is able to derive types for almost all DSL
expressions though there are some exceptions. For these exceptions
or software engineering reasons, it is convenient to specify types
inside our DSL [31, §11.4]. Our host language Clean has no syntax
for adding type ascriptions to expressions.!! With the definition
of type witnesses and two combinators we mimic the effect for
the monomorphic definitions in our DSL. The type witnesses are
values inside our DSL with suggestive names. In these definitions,
we hide on purpose that these are types in our DSL rather than
plain values.

Bool :: v Bool | lit v
Bool = 1lit False

Int :: v Int | lit v
Int = 1lit 42

We define two combinators named : :: and —. to ascribe the type.
The first infix combinator is used to indicate that an expression e

hastypeTase ::: T.The second infix operator constructs function
typesas (\\x. x +. 1lit 1) ::: Int —. Int.

(:::) infix 1 :: aa — a

(:::x) at=a

11Something that is available in e.g. Haskell98 [28, §3.16].

PPDP ’25, September 10-11, 2025, Rende, Italy

(—.) infixr 2 :: a b — a—b

(=».)ab=Ada —>b

This approach is very similar to the use of Proxy and type ascrip-
tions. The advantage of our approach with type witnesses is that
we never need to write Proxy in the types and are not building on
language extensions. The disadvantage is that it must be possible
to create a value of the type, something that is always the case, e.g.
a value of the World [2] or the Void type. Though undef can be used
as the value is never evaluated anyway.

In this approach these witnesses are never materialized in any
interpretation of the DSL. The definition of ::: discards them. An
application is the factorial definition below. The examples show
that we can type definitions with various arities as well as sub
expressions.

ex1_typed n =
def Adone — lit 1 ::: Int In
def dequ - (Ax y = x ==. y) ::: Int —. Int —. Bool In
def Afac — (An. If (equ n one ::: Bool)
one
(n *. fac (n -. one) ::: Int)) ::: Int —. Int In
fac (lit n) ::: Int

5.2 Named Arguments

Sometimes it is convenient to indicate function arguments by a
name rather than by their position. For instance when a function
has multiple arguments of the same type. We can facilitate named
arguments in the DSL by using a record type of the host language.

For instance, we calculate the compound interest of some loan
based on four real numbers.'? The record Loan introduces names
for these values. All values are Real numbers in our DSL. Hence,
they are interpretations v on such a value. This interpretation v
parameterizes the record.

: Loan v ={ sum :: v Real // principal sum
, rate :: v Real // nominal annual interest rate
, freq :: v Real // compound frequency
, time :: v Real // overall length of time
}

Using this record we can use named function arguments and param-
eters as in the example compoundInterest. Note that the order of
fields in the definition of the function ci differs from the argument
loan1. Allowing this is exactly the purpose of the named arguments.

compoundInterest =
def Aci = (A{sum, rate, freq, time} —
sum x. (lit 1.0 +. rate /. freq) *. (freq x. time)) In
ci { freq = 1lit 4.0, time = lit 6.0
, sum = lit 1500.0, rate = lit 4.3 /. lit 100.0}

Without any changes to the given DSL implementation, this evalu-
ates to 1938.8.

We need to add an instance of the class defType from Section 3.2.2
when we want to print DSL expressions with instances of this type.
We need to add argument identifiers to record fields to cope with
multiple arguments of type Loan. Hence, it is more concise to print

128ee https://en.wikipedia.org/wiki/Compound_interest for an explanation.

Benedikt M. Rips, Niek Janssen, Mart Lubbers, and Pieter Koopman

only this identifier as the formal argument of DSL definitions. Since
records and record updates are part of the host language rather
than the DSL, the only safe option is to print each record field
explicitly in every application. This becomes rather verbose. A
direct implementation yields for our compound interest example:

def vo = Avl — (v1.sumx((1+(v1.rate/v1.freq))*(v1.fregxvi.time)))
In (vo { sum = 1500, rate = (4.3/100), freq = 4, time =6 })

5.3 Prohibiting Nested Definitions

The DSL binders introduced above can be nested arbitrarily. It is
convenient that arguments of a function are available in a nested
definition. See for instance example ex3 (Section 3.2). The arguments
x and n of function pow are used in the body of y. However, for some
DSLs this is undesirable. Nested definitions require special attention
in code generation to make the implicit arguments reachable. Well-
known solutions to handle nested definitions are closure conversion
and lambda lifting.

Using a slightly different function definition class, we prevent
nested definitions. The key is to wrap the expression in which the
bound term is used in a data type. Here we use a record, but an
algebraic data type works equally well. Also note that we provide
Haskell code here because the Lift type class from Section 3.2.3
which is implemented in Haskell is used.

data Main v b = Main { runMain :: v b }

By embedding the main expression in a record, we ensure that the
type system enforces that the DSL user only writes definitions at
the top level. To avoid name clashes with the DSL binder def that
was introduced earlier, the binder for top-level terms only is called
defM.

class DefM a v where
defM :: Lift va = (a — a

In~ Main v b) — Main v b
instance DefM a E where
defM f = let (body “In” expr) = f body in expr

Obviously, enforcing only top-level terms works only in a DSL
where the def binder is not available. We can still have multiple
definitions, but only definitions at the outermost level. Any defM
definition at a nested position causes the required type error. Note
that for this to work, it is important to restrict the type a of bindable
terms by the Lift type class as laid out in Section 3.2.3. Otherwise,
nesting in the form of

defM At1 — (defM At2 — .-+ “In~ Main ---) “In" t2

is still possible. Apart from the wrapping Main type, defM definitions

are identical to def definitions. Also, all instances are similar. To

prevent that the user of the DSL fools the system, the runMain

accessor is only available inside the implementation of the DSL.
Yet another variant of the factorial example, this time with top-

level terms only, is given below.

facM n =
defM Aone — 1lit 1 “In”
defM Aise — (==.) (lit @) “In”
defM Afac = (An. If (is@ n) one (n *. fac (n -. one))) “In”
Main $ fac (lit n)

https://en.wikipedia.org/wiki/Compound_interest

Shallowly Embedded Functions

6 Code Generation for Nested Functions

To show that this approach is not limited to simpler interpreta-
tions, we introduce code generation as a new interpretation for
the example DSL. For this illustration, we use the standalone func-
tion variant (Section 4). To handle nested functions, we adjust the
function definition by adding arguments for the captured variables
and all applications are extended with the captured variables. This
obtains the same effect as lambda lifting [14].

The generated code is represented by the algebraic data type
Instruction containing instructions for a stack machine. There are
two instructions that contain data only used during compilation.
Firstly, Marker is used to place markers in the code, and allow easy
later patching the code. Secondly, Arg contains two data fields; the
scope, and the argument number. The scope number is only used
internally to implement lambda lifting. Extensible ADTs [32, §5.1.5],
data types a la carte [37], or classy deep embedding [21] can be
used to hide these constructors.

:: Instruction = Push Int | Arg Int Int
| Add | Sub | Mul | Div | Le | Eq | And | Or | Not | Neg
| Lbl Int | Jmp Int | JmpF Int | Jsr Int | Ret Int | Halt
| Marker Int

6.1 Compilation

The compilation of our DSL follows the same schema as printing
and uses a reader writer state monad. The reader part is not used.
The state contains a counter for fresh identifiers, a map from func-
tion identifiers to the code of the body, a map from function names
to identifiers and a map containing the required metadata used
when calling a function. During execution of the monad, instruc-
tions are emitted through the writer part of the monad.

: Compile a = C (CompileM ())

:: CompileM a :== RWS () [Instruction] CompileState a
:: CompileState =
{ fresh ;o Int
, functions :: Map Int [Instruction] // Maps labels to instructions
, funmap : Map String Int // Maps names to labels
, funcalls :: Map Int [Instruction] // Maps labels to function calls

}

runCompile :: (Compile a) — CompileM ()

runCompile (C a) = a

The instances of the DSL components regarding expressions
follow the pattern familiar from printing them. For simplicity, we
assume that all basic data types are converted to an integer (using
toInt) to keep the stack representation homogeneous. This is added
as a class constraint to the 1lit function. Only in the conditional
expression, the state is used to generate fresh labels in order to
implement the jumps between conditional branches.

instance lit Compile where
lit a = C (tell [Push (toInt a)l)
instance arith Compile where
(+.) x y = C (runCompile x >>| runCompile y >>| tell [Add])

instance bool Compile where - - -

instance comp Compile where - - -

PPDP ’25, September 10-11, 2025, Rende, Italy

instance If Compile where
Ifcte=C(
fresh >= Aelselabel — fresh >= Aendiflabel —
runCompile ¢ >>| tell [JmpF elselabel] >>|
runCompile t >>| tell [Jmp endiflabel, Lbl elselabel] >>|
runCompile e >>| tell [Lbl endiflabel])

6.2 Functions

Functions are implemented in this compiler similar to the printer.
We show the fun instance for single argument functions, the im-
plementation for other arities is more of the same. In the body, the
arity and the name of the function are passed to compOrRetrFunction.
The third argument of this function is a function that, given a label,
provides a representation of the arguments to the function defini-
tion. The compOrRetrFunction produces a label used for calling the
function. If the function was already encountered, only the label is
returned, if the function is seen for the first time, the definition is
generated. Using the label, callFunction is called with the code to
evaluate the arguments and the label.

instance term Compile where
term name f = fun name (AQ)—f) ()
instance fun (Compile a) Compile where
fun name f = Ax — C (compOrRetrFunction 1 name
(Albl — f (C (tell [Arg 1bl @1)))
>>= callFunction (runCompile x))

6.2.1 Generating the Definition. The compOrRetrFunction function
first checks if the function has been encountered before by looking
it up in the funMap. If this is the case, we return the label immediately.
Otherwise, we generate a fresh label and store it with the name in
the funMap. Then we execute the body using the provided function
f while capturing the output using censor and listen — similarly to
what was done in the printing interpretation. The instructions are
placed after performing the lambda lifting. Finally, the instructions
for the function call preparation is stored in the funcalls field. Later,
the Marker referencing this label is replaced by this sequence of
instructions.

compOrRetrFunction :: Int String (Int — Compile a) — CompileM Int
compOrRetrFunction arity n f =
gets (As — 'M'.get n s.funmap) >= Av — case v of
?Just i = pure i
None = fresh // Generate a fresh label
>= Albl — modify (As—{s & funmap='M'.put n 1bl s.funmap})
> | censor (A — [1) (listen (runCompile (f 1bl)))
>= A(_, def)—let la = findLiftedArguments 1lbl def in
modify (As — {s & functions=
'M'.put 1bl (1lift arity 1bl def la) s.functions})
> | modify (As — {s & funcalls =
'M'.put 1bl [Arg 1bl i \\ (_, i) < lal s.funcalls})
>> | pure 1bl

Lambda lifting finds the captured arguments of nested functions
and adds them to the definition and applications. In general, lifting
all functions to top-level definitions requires an intensional analysis
of the call graph [26]. For the sake of simplicity and brevity, this
implementation only handles simple cases, one level deep, where an

PPDP ’25, September 10-11, 2025, Rende, Italy

argument of an outer function is used in an inner function. Lifted
arguments are identified by having a different label than the current
function and assigned a number. Lifting them is done by replacing
the Arg instructions by Arg instructions with the label of the current
function and with a patched number.

findLiftedArguments :: Int [Instruction] — [((Int, Int), Int)]
findLiftedArguments 1bl def = zip2 (sort (removeDup

[(F, i) \\ (Arg f i) < def | f # 1b11)) [0..]

1lift :: Int Int [Instruction] [((Int, Int), Int)] — [Instruction]
lift arity 1bl def la = map replacelLift def
+ [Ret (arity + length la)]
where replaceLift :: Instruction — Instruction
replaceLift a=:(Arg f i) = case lookup (f, i) la of
?None = a
?Just a = Arg 1bl (arity + a)

replaceLift i =i

6.2.2 Calling Functions. The second part of the fun implementation
is generating the code for calling the function. In case of a recursive
call, it is not yet known what data from the context, i.e. lifted
arguments, need to be inserted as well. Therefore, a marker is
included that represents the context, this is later be replaced by the
code for the context. After pushing the marker, the arguments are
evaluated and a Jsr instruction is written.

callFunction :: (CompileM ()) Int — CompileM ()
callFunction args i = tell [Marker i] >>| args >>| tell [Jsr i]

6.3 Running the Compiler

Compilation is a matter of running the monad stack. This results
in code for the main expression in the writer output and the code
and metadata for the functions in the resulting state. The main
expression decorated with a Halt instruction is concatenated with
functions decorated with labels. The resulting code still contains
markers, they are then replaced by the corresponding instructions
to push the lifted arguments.

compile :: (Compile a) — [Instruction]
compile (C f) = foldr replaceMarkers [] (main + [Halt

: flatten [[Lbl 1:is] \\ (1, is) « '"M'.toList st.functions]])
where

(st, main) = execRWS f ()

{ fresh =0, functions = 'M'.newMap
, funmap = 'M'.newMap, funcalls = 'M'.newMap
3
replaceMarkers (Marker i) acc = 'M'.find i st.funcalls # acc

replaceMarkers i acc = [i:acc]

Using the following nested definition, 11ift (lit 40) evaluates
to 42.

11ift = fun "plustwo" Ax —
let local = fun "fplus" Ay — y +. x
in local (lit 2)

Compiling this code produces the instructions below. Function
label @ is the plustwo function, label 1 is the fplus function. Before
jumping to fplus, Arg 1 0, the context, is pushed, followed by the
argument Push 2.

Benedikt M. Rips, Niek Janssen, Mart Lubbers, and Pieter Koopman

Push 40
Jsr @
Halt
0: Arg 10
Push 2
Jsr 1
Ret 1
1: Arg 1 0
Arg 11
Add
Ret 2

7 Related Work

The idea of embedding DSLs is due to Landin [20]. Hudak [12]
introduced the notion of embedded modular DSLs in functional
programming. Pfenning and Elliott [30] introduce, with HOAS, a
simply typed A-calculus enriched with products and polymorphism
to express syntax trees. This in turn is an extension of the second-
order term language of Huet and Lang [13].

Using a type parameter is known from Parametric HOAS (7]
and Boxes Go Bananas [38]. While those techniques use the type
parameter to prevent exotic terms, we use the type parameter to
indicate the type of the DSL construct. This leverages the host
language’s type checker to rule out undesirable terms and to infer
the type. In that sense, it is similar to the type parameter in GADTs.
Yet, in contrast to a deep based embedding, our shallow embedding
is simpler in that it omits some quantifiers.

A consequence of defining identifiers as function arguments
and imposing the normal type constraints is that we can define
polymorphic functions in the DSL, but we can only use them with a
single type instance. Serrano et al. [35] introduce a type extension
to allow the polymorphic use of such a definition at the cost of
an explicit type definition. In Koopman and Lubbers [18] we show
that we can achieve the same effect at the cost of an additional
constructor in function definitions and hence an explicit function
application operator. Oliveira and Loh [27] introduces techniques
for expression sharing and recursion that we reuse here.

Atkey et al. [1], Matsuda et al. [24] converts the finally-tagless
representation of lambda-terms to de Bruijn-indexed terms to fix
the mismatch between host and guest language function semantics.
This allows open terms as well other interpretations of function
application. Our DSL functions are well-typed, implying that un-
desired terms are prevented, and can be recursive. By selecting
the desired version of the definition, we can impose additional
constraints, like a controlled number of arguments or first-order
functions.

The original HOAS idea based on ADTs suffers from problems
with exotic or junk terms [7]. Our class-based HOAS approach
exposes the issue if the interpretation is known since it allows
the user to exploit internals of the interpretation. Making an ex-
pression parametric in the interpretation, i.e. quantifying over the
interpretation v, resolves it.

Intentional analysis, like program optimization and partial eval-
uation, is generally hard with HOAS and shallow embeddings be-
cause we cannot inspect functions. This is solved for HOAS [1] and
class-based shallow embeddings [6, 16] by converting to-and-from

Shallowly Embedded Functions

a deep representation or by using an intermediate data type cap-
turing just enough state. Gill [11] introduced an IO-based solution
to observable sharing that uses type functions to provide type-safe
observable sharing. McDonell et al. [25] expand on this for a typed
syntax tree.

Carette et al. [6], Kiselyov [16] use A-calculus with a fixed-point
combinator instead of direct recursion. In this paper, we show that
we can use also a fixed-point combinator, but that direct recursion
is more elegant and direct. The direct approach for evaluation is
similar to Fegaras and Sheard [8] for a DSL that is always evaluated.
Since we control what is done with applied function occurrences,
we have fewer problems with intentional analysis and can easily
make interpretations of the DSL like code generators and pretty
printers.

Kiselyov [17] explicates the challenges in generating safe low-
level code. These techniques should integrate with our approach.

Every class constraint needed in some interpretations is part of
the type classes constructing our DSL. Jones et al. [15] shows how
these constraints can be moved to the interpretations that require
them.

Naming components of the language is not new. For example,
Frost et al. [9] used this technique to detect left recursion in parser
combinators. We show that it can be used for DSL functions as well
that can be recursive themselves.

Implementing named arguments by means of a record, as de-
scribed in Section 5.2 has been discussed extensively in white and
grey literature. To the best of our knowledge, it has never been pub-
lished in a DSL context before, although it is known from folklore.

8 Conclusion

This paper shows that it is possible to define strongly-typed func-
tions as part of an embedded DSL with multiple interpretations in a
strongly-typed host language. Key to these type-safe definitions are
two observations. First, the type parameter of DSL expressions mir-
rors its type. Second, identifiers for functions are provided in HOAS
style, hence giving the identifier itself a type. The type checker of
the host language then unifies the identifier’s type with the type of
the expression that the identifier is bound to. The only syntactical
overhead is a DSL binding construct and a lambda for defining the
identifier.

To allow multiple interpretations of the DSL we use a class-based
embedding. Each interpretation of the DSL is an instance of the
classes constructing the DSL. We demonstrate evaluation, pretty
printing, and code generation of nested functions using lambda
lifting for a first-order functional DSL.

We presented gradual additions to the binder to allow more
general types of functions. In the first iteration, functions accept
exactly one argument that is a single DSL value. In the second
iteration, functions accept multiple arguments, encoded as a tuple
of DSL values. This binder also showed how to restrict the arity
of functions. In the third iteration, the most general case, DSL
functions support any number of arguments, just like functions
in the host language. In addition, we demonstrated a technique
to restrict the types allowed in a DSL by enumerating these types
through an empty type class. Hereby, the liberality of the DSL
binder is decoupled from a restriction on the DSL types.

PPDP ’25, September 10-11, 2025, Rende, Italy

Besides enabling functions of arbitrary arity, our binder also han-
dles recursive functions, or, more general, recursive terms. Further-
more, we illustrated a technique to extend the binder to mutually-
recursive terms: Instead of binding a single expression only, we
bind a tuple of expressions simultaneously.

These ideas were complemented with an approach for defining
standalone functions to facilitate reuse. This enables us to imple-
ment libraries of DSL expressions.

Like with many eDSLs, the type errors that a user faces are
difficult to comprehend. They are intertwined with the machinery
which is not meant to be shown to the user, like e.g. the type
classes for the restriction of eDSL types and the printing of arbitrary
arity functions. There are well-known techniques to improve error
messages of eDSLs [33, 34].

The printing of arbitrary arity functions shows another problem:
To pattern-match on arrow types, we need another type class that
is not related to the DSL itself. This implies that, in order to print
expressions, printing-specific type class constraints have to be listed
in the expression’s typing context. Yet, the nature of the printing
implementation suggests that it underlies a generic concept that
remains to be uncovered in forthcoming work.

An interesting property of the DSL binder is that, from the
perspective of the type system, it allows higher-order functions.
However, we do not know of an implementation of higher-order
functions for non-trivial interpretations. Investigating their im-
plementation seems like another exciting opportunity for future
work.

References

[1] Robert Atkey, Sam Lindley, and Jeremy Yallop. 2009. Unembedding Domain-
Specific Languages. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell
(Haskell ’09). ACM, New York, NY, USA, 37-48. doi:10.1145/1596638.1596644
event-place: Edinburgh, Scotland.

[2] John Backus, John H. Williams, and Edward L. Wimmers. 1990. An Introduction
to the Programming Language FL. In Research Topics in Functional Programming.
Addison-Wesley Longman Publishing Co., Inc., USA, 219-247.

[3] Henk P. Barendregt. 2012. The Lambda Calculus Its Syntax and Semantics. Num-
ber 40 in Studies in Logic. College Publ, London.

[4] Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S. Oliveira,
and Philip Wadler. 2017. Quantified class constraints. In Proceedings of the 10th
ACM SIGPLAN International Symposium on Haskell (Haskell 2017). Association
for Computing Machinery, New York, NY, USA, 148-161. doi:10.1145/3122955.
3122967 event-place: Oxford, UK.

[5] T.H.Brus, M.C.].D.van Eekelen, M. O. van Leer, and M. J. Plasmeijer. 1987. Clean
— A language for functional graph rewriting. In Functional Programming Lan-
guages and Computer Architecture, Gilles Kahn (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 364-384.

[6] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally Tagless,
Partially Evaluated: Tagless Staged Interpreters for Simpler Typed Languages. 7.
Funct. Program. 19, 5 (sep 2009), 509-543. doi:10.1017/S0956796809007205

[7] Adam Chlipala. 2008. Parametric Higher-Order Abstract Syntax for Mechanized
Semantics. In Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming (ICFP 08). ACM, New York, NY, USA, 143-156. doi:10.
1145/1411204.1411226 event-place: Victoria, BC, Canada.

[8] Leonidas Fegaras and Tim Sheard. 1996. Revisiting catamorphisms over datatypes
with embedded functions (or, programs from outer space). In Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(St. Petersburg Beach, Florida, USA) (POPL ’96). Association for Computing
Machinery, New York, NY, USA, 284-294. doi:10.1145/237721.237792

[9] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. 2008. Parser Combina-

tors for Ambiguous Left-Recursive Grammars. In Practical Aspects of Declarative

Languages, Paul Hudak and David S. Warren (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 167-181.

Jeremy Gibbons and Nicolas Wu. 2014. Folding Domain-Specific Languages:

Deep and Shallow Embeddings (Functional Pearl). In Proceedings of the 19th

ACM SIGPLAN International Conference on Functional Programming (ICFP ’14).

ACM, New York, NY, USA, 339-347. doi:10.1145/2628136.2628138 event-place:

[10

https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/237721.237792
https://doi.org/10.1145/2628136.2628138

PPDP ’25, September 10-11, 2025, Rende, Italy

(1]

[12]

[13

[14]

[15]

[16

[17]

(18

[19]

[20

[21

[22

[23

[24]

[25]

[26]

[27]

[28

[29]

[30]

[31]

)
&

[33]

[34

Gothenburg, Sweden.

Andy Gill. 2009. Type-safe observable sharing in Haskell. In Proceedings of the 2nd
ACM SIGPLAN Symposium on Haskell (Haskell "09). Association for Computing
Machinery, New York, NY, USA, 117-128. doi:10.1145/1596638.1596653 event-
place: Edinburgh, Scotland.

Paul Hudak. 1998. Modular Domain Specific Languages and Tools. In Proceedings
of the 5th International Conference on Software Reuse (ICSR ’98). IEEE Computer
Society, USA, 134. doi:10.1109/ICSR.1998.685738

Gérard P. Huet and Bernard Lang. 1978. Proving and Applying Program Trans-
formations Expressed with Second-Order Patterns. Acta Informatica 11 (1978),
31-55. doi:10.1007/BF00264598

Thomas Johnsson. 1984. Efficient Compilation of Lazy Evaluation. In Proceedings
of the 1984 SIGPLAN Symposium on Compiler Construction (Montreal, Canada)
(SIGPLAN °84). Association for Computing Machinery, New York, NY, USA, 58-69.
doi:10.1145/502874.502880

Will Jones, Tony Field, and Tristan Allwood. 2012. Deconstraining DSLs. ACM
SIGPLAN Notices 47, 9 (Oct. 2012), 299-310. doi:10.1145/2398856.2364571

Oleg Kiselyov. 2012. Typed Tagless Final Interpreters. In Generic and Indexed
Programming: International Spring School, SSGIP 2010, Oxford, UK, March 22-26,
2010, Revised Lectures, Jeremy Gibbons (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 130-174. doi:10.1007/978-3-642-32202-0_3

Oleg Kiselyov. 2024. Generating C: Heterogeneous metaprogramming system
description. Science of Computer Programming 231 (2024), 103015. doi:10.1016/j.
5¢ic0.2023.103015

Pieter Koopman and Mart Lubbers. 2023. Strongly-Typed Multi-View Stack-Based
Computations. In Proceedings of the 25th International Symposium on Principles
and Practice of Declarative Programming (PPDP °23). Association for Computing
Machinery, New York, NY, USA, 1-12. doi:10.1145/3610612.3610623 event-place:
Lisboa, Portugal.

Shriram Krishnamurthi. 2001. Linguistic reuse. PhD Thesis. Rice University,
Houston, USA.

Peter J. Landin. 1966. The next 700 programming languages. Commun. ACM 9, 3
(March 1966), 157-166. doi:10.1145/365230.365257

Mart Lubbers. 2022. Deep Embedding with Class. In Trends in Functional Program-
ming, Wouter Swierstra and Nicolas Wu (Eds.). Springer International Publishing,
Cham, 39-58. do0i:10.1007/978-3-031-21314-4_3

Mart Lubbers and Peter Achten. 2024. Clean for Haskell Programmers.
arXiv:2411.00037 [cs.PL] https://arxiv.org/abs/2411.00037

Mart Lubbers, Pieter Koopman, and Niek Janssen. 2023. Source code for the
paper Shallowly Embedded Functions. doi:10.5281/zenodo.10225278

Kazutaka Matsuda, Samantha Frohlich, Meng Wang, and Nicolas Wu. 2023.
Embedding by Unembedding. Proc. ACM Program. Lang. 7, ICFP (Aug. 2023).
doi:10.1145/3607830 Place: New York, NY, USA Publisher: Association for Com-
puting Machinery.

Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lippmeier.
2013. Optimising purely functional GPU programs. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’13).
Association for Computing Machinery, New York, NY, USA, 49-60. doi:10.1145/
2500365.2500595 event-place: Boston, Massachusetts, USA.

Marco T. Morazan and Ulrik P. Schultz. 2008. Optimal Lambda Lifting in Quadratic
Time. In Implementation and Application of Functional Languages: 19th Inter-
national Workshop, IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised
Selected Papers. Springer-Verlag, Berlin, Heidelberg, 37-56.

Bruno C. d. S. Oliveira and Andres Loh. 2013. Abstract syntax graphs for domain
specific languages. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial
Evaluation and Program Manipulation (Rome, Italy) (PEPM ’13). Association for
Computing Machinery, New York, NY, USA, 87-96. doi:10.1145/2426890.2426909
Simon Peyton Jones (Ed.). 2003. Haskell 98 language and libraries: the revised
report. Cambridge University Press, Cambridge.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. 2006. Simple Unification-Based Type Inference for GADTs. In Proceedings of
the Eleventh ACM SIGPLAN International Conference on Functional Programming
(Portland, Oregon, USA) (ICFP ’06). Association for Computing Machinery, New
York, NY, USA, 50-61. doi:10.1145/1159803.1159811

Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In Proceed-
ings of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation (Atlanta, Georgia, USA) (PLDI ’88). Association for Computing
Machinery, New York, NY, USA, 199-208. doi:10.1145/53990.54010

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT
Press, Cambridge, Massachusetts.

Rinus Plasmeijer, Marko van Eekelen, and John van Groningen. 2021. Clean
Language Report version 3.1. Technical Report. Institute for Computing and
Information Sciences, Nijmegen. 127 pages.

Alejandro Serrano. [n. d.]. Type Error Customization for Embedded Domain-Specific
Languages. Ph. D. Dissertation.

Alejandro Serrano and Jurriaan Hage. 2017. Type Error Customization in
GHC: Controlling expression-level type errors by type-level programming. In
Proceedings of the 29th Symposium on the Implementation and Application of

Benedikt M. Rips, Niek Janssen, Mart Lubbers, and Pieter Koopman

Functional Programming Languages (Bristol, United Kingdom) (IFL ’17). Asso-

ciation for Computing Machinery, New York, NY, USA, Article 2, 15 pages.

doi:10.1145/3205368.3205370

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis.

2020. A quick look at impredicativity. Proc. ACM Program. Lang. 4, ICFP, Article

89 (Aug. 2020), 29 pages. doi:10.1145/3408971

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for

Haskell. In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell (Haskell

’02). ACM, New York, NY, USA, 1-16. doi:10.1145/581690.581691 event-place:

Pittsburgh, Pennsylvania.

[37] Wouter Swierstra. 2008. Data types a la carte. Journal of functional programming
18, 4 (2008), 423-436. doi:10.1017/S0956796808006758

[38] Geoffrey Washburn and Stephanie Weirich. 2003. Boxes go bananas: encoding
higher-order abstract syntax with parametric polymorphism. SIGPLAN Not. 38,
9 (Aug. 2003), 249-262. doi:10.1145/944746.944728

[35

[36

A Evaluation Tooling

Throughout this paper we use evaluators and printing interpreta-
tions of various eDSLs. We try to reuse the standard tooling, like
instances for the monad classes, as much as useful. The required
definitions for evaluation are given in this appendix. The next ap-
pendix contains the tooling for the print interpretations.

For the evaluation of DSL variants, we use the simplest type
possible that generalizes to all monads.!® There is no need to carry
a state around since all variables are represented by functions or
function arguments. We use the substitution mechanism of the host
language to ensure type-safe and efficient replacement of variables
by the appropriate value.

:: Ea=E!la

instance pure E where pure a = E a

instance Monad E where bind (E a) f = f a
instance Functor E where fmap f (E a) = E (f a)
instance <x*> E where (<*>) (E f) (E a) = E (f a)

The evaluation of the basic classes not listed in Section 2.1 are
listed here. The instances for the class bool ensure that the second
argument is only evaluated when that is necessarily.

instance bool E where
(8&.) x y = x >=Ab — if b y (pure False) // for lazy evaluation
(I1.) x y=x>»=Ab - if b (pure True) y // forlazy evaluation
instance comp E where
(=) xy=(==) <> x<x>y
(<) xy=(<) <$>x<x>y
instance If E where If c t e =c >=Ab. if b t e

B Print Tooling

The print tooling is more sophisticated than the evaluation tooling.
It is based on the reader writer state monad. The state PS is a record
containing an integer i to generate fresh variables, a context that
is a stack of function IDs, a mapping from IDs to output as a list of
strings, and an indentation depth ind. Only the last DSL versions
use all these fields. The writer monad is a list of strings, [String], to
denote the output of printing. The reader PR is not used and equals
void, ().

: PS =
{i:: Int, context :: [ID]
, defs :: Map ID [Stringl, ind :: Int}

31n Clean, ! indicates strictness, so this is the strict identity functor.

https://doi.org/10.1145/1596638.1596653
https://doi.org/10.1109/ICSR.1998.685738
https://doi.org/10.1007/BF00264598
https://doi.org/10.1145/502874.502880
https://doi.org/10.1145/2398856.2364571
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1016/j.scico.2023.103015
https://doi.org/10.1016/j.scico.2023.103015
https://doi.org/10.1145/3610612.3610623
https://doi.org/10.1145/365230.365257
https://doi.org/10.1007/978-3-031-21314-4_3
https://arxiv.org/abs/2411.00037
https://arxiv.org/abs/2411.00037
https://doi.org/10.5281/zenodo.10225278
https://doi.org/10.1145/3607830
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2426890.2426909
https://doi.org/10.1145/1159803.1159811
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/3205368.3205370
https://doi.org/10.1145/3408971
https://doi.org/10.1145/581690.581691
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/944746.944728

Shallowly Embedded Functions

;2 PR == ()
:: Print a =P (PrintM ())
: PrintM a :== RWS PR [String] PS a
: ID :== String
We use some convenience functions for this RWS monad. They are
explained in context on their first use in this paper.
runPrint :: (Print a) — PrintM ()

runPrint (P a) = a

nl :: PrintM ()
nl = get >=As — tell ["\n" : [" " \\ _« [1..s.ind]]]

incr :: PrintM ()

incr = modify As — {s & ind = s.ind + 1}

decr :: PrintM ()

decr = modify As — {s & ind .ind - 13}

Il
7

fresh :: PrintM String
fresh = get >=As. put {s & i =s.i + 1}
> | pure ("V" + toString s.i)

printAll :: (Print a) — String
printAll (P f) = concat

('M'.foldrWithkey (Ak v a. ["\n":v] + a) ["\n":main] st.defs)
where

PPDP ’25, September 10-11, 2025, Rende, Italy

(st, main) = execRWS f ()
{i=0, context=[], defs='M'.newMap, ind=0}

printMain :: (Print a) — String
printMain (P f) = concat main
where
(st, main) = execRWS f ()
{i=0, context=[], defs='M'.newMap, ind = @}

prnt :: a — PrintM () | toString a
prnt s = tell [toString s]

show™ :: (DSL a) — PrintM () | toString a
show™ e = let (P p) = showl e in p

The print instances for basic classes not listed in Section 2.2 are
listed here.

instance bool Print where
(8&.) x y = printBin x y "8&&"
(11.) x y = printBin x y "[|"
instance comp Print where
(==.) x y = printBin x y "=="
(<.) x y = printBin x y "<"
instance If Print where
If ¢ t e =P (tell ["(If "] > runPrint ¢ > | tell [" "] >|

runPrint t > | tell [" "] >>| runPrint e >| tell [")"])

	Abstract
	1 Introduction
	1.1 Requirements for DSL Functions
	1.2 Research Contribution

	2 The Example DSL
	2.1 Evaluation
	2.2 Printing

	3 Handling Arity and Recursion
	3.1 Fixed Arity
	3.2 Arbitrary Arity
	3.3 Mutual Recursion

	4 Standalone Functions
	4.1 Named Functions
	4.2 Evaluation
	4.3 Printing

	5 Auxiliary Techniques
	5.1 Indicating Types
	5.2 Named Arguments
	5.3 Prohibiting Nested Definitions

	6 Code Generation for Nested Functions
	6.1 Compilation
	6.2 Functions
	6.3 Running the Compiler

	7 Related Work
	8 Conclusion
	References
	A Evaluation Tooling
	B Print Tooling

