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Abstract

Task-oriented programming (top) is a declarative programming
paradigm where the main building blocks are tasks. Tasks represent
work and have an observable task value. Tasks are combined to
form compositions of tasks. From this specification of work, a ready-
for-work application can be derived automatically.

There are several implementations of task-oriented program-
ming, for example iTask, an industry-grade top system for dis-
tributed web applications; and TopHat, a fully formalised task-
oriented language. iTask and TopHat differ a lot in philosophy.
The iTask language only has three complex super combinators from
which every other combinator is derived. This makes it difficult
to provide a formal semantics for them. In TopHat more complex
combinators are built from a rich set of simple building blocks, core
combinators. Consequently, defining a formal semantics is easier.

By definition, the super combinators of iTask are more expres-
sive than TopHat, as they allow the programmer to use the full host
language Clean to define the behaviour. Whereas in TopHat, one
has to create the behaviour by combining simple core combinators.
The contribution of the paper is threefold, we perform a qualitative
and quantitative analysis of task combinator usage. From that, we
identify gaps between iTask and TopHat. Finally we introduce a
new combinator, reflect (⊚) to bridge a gap.
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1 Introduction

Task-oriented programming (top) is a relatively new programming
paradigm to model workflows [37]. It is a declarative programming
paradigm where the basic building blocks are tasks. Tasks are an
abstract representation of work and only describe what work needs
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to be done, the how is derived from this specification. Tasks have an
observable task value. I.e. during the execution of a task, other tasks
can observe the progress of the task andmake decisions accordingly.
Task values are observed by other tasks using task combinators.
There is a rich set of task combinators that allow the composition
of tasks. For example, tasks can be composed sequentially or parallel
to form complex workflow systems. Besides exposing the progress
of a task following control flow, tasks can share information across
control flow using Shared Data Sources (sdss).

There are several implementations of top, for example iTask,
an industry-grade top system for distributed web applications;
toppyt, a top implementation in Python [21, 22]; mTask, a top
language for microprocessors that integrates with iTask [17, 26];
and TopHat, a fully formalised top language. The first and the last
are the focus of this paper.

The iTask system is a top implementation that generates an
interactive multi-user distributed web server that facilitates users
to perform the specified work [34]. It is implemented as an embed-
ded domain-specific language (eDSL) in the purely functional host
language Clean [7, 38].1 It has a long history and the set of task
combinators changed continuously throughout the years [19]. The
philosophy behind iTask is that with three super combinators, all
other combinators are derived. This means that there is only one
sequential super combinator (step), one parallel super combina-
tor (parallel), and one transform combinator (transformError). As
a consequence, deriving new combinators is relatively easy, but
understanding or changing the exact semantics of the super combi-
nators is difficult, as they define a mixture of complex behaviours.
Attempts to define a semantics have been made but always only on
a subset of iTask [18, 37]. There are many documented case studies
in literature and it is used in industry, resulting in a relatively large
codebase of real-world top applications.

TopHat is a top implementation that is fully mathematically
formalised [44]. This formalisation is used to drive a symbolic exe-
cution engine on tasks which supports next-step hints generation
[30, 31]. It is also the basis for reasoning about equivalence of tasks
[16]. The design of task combinators in TopHat is exactly opposite
of iTask. Instead of deriving all combinators from three complex
super combinators, there is a rich set of core combinators from
which more complex ones can be derived. Over the years, the set of
core combinators of TopHat has been extended to cover more and
more real-world workflow patterns. For example, allowing users to
dynamically spawn more tasks [43].

Motivation. Comparing the expressive power of iTask and Top-
Hat is difficult due to their philosophical differences and their
implementation details. Still, we would like to identify the feature

1A guide to Clean for haskell programmers can be found in Lubbers and Achten
[27].
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gaps between these two top implementations. Many features in
iTask grew over time and their theoretical usefulness is not directly
apparent. Basing our knowledge on real-world usage is therefore
paramount. Then, we can make a well founded decision on extend-
ing TopHat and providing formal semantics for missing features.

Contributions. The research contribution of this paper is three-
fold. First, we identify combinator usage of real-world top programs
by analysing thirteen iTask’s published case studies, two of iTask’s
internal workflow applications, and one real-world industrial appli-
cation. Then, using this information, we establish the gaps between
iTask and TopHat. For each of these gaps, we discuss the impact on
top code and the necessity to formalise these features in TopHat.
We conclude that task value reflection, detaching of tasks, excep-
tions, and advanced parallel combinator usage are features of iTask
that are currently not supported by TopHat. Finally, we narrow
the gap between iTask and TopHat in two ways. We identify a
derived combinator censor (⌊𝑡⌋) and we add task value reflection
to TopHat by extending the language with a new reflect (⊚) core
combinator. We give its complete semantics and derive the reflect
combinators seen in the real-world iTask examples from it.

Structure. The remaining of this paper is structured as follows.
First, in Section 2 we introduce top and its concepts by means of
TopHat. We discuss the language, its components and combinators,
and its semantics. Next, in Section 3, we describe our method and
results for analysing real-world top applications. For each category
of combinators, we describe similarities and differences between
TopHat and iTask. Then, in Section 4, we dive into the usage and
semantics of reflection combinators and extend TopHat with a new
combinator supporting these workflow patterns. Section 5 discusses
related work and Section 6 concludes our paper.

2 Task-oriented programming in TopHat

In this section we discuss the semantics of task-oriented programs
by means of TopHat [45]. TopHat is a formal specification of task-
oriented programming, with a verified implementation in Idris2
and a practical one in Haskell.3 It specifies the semantics of basic
task-oriented operations. The framework has been extended for
symbolic execution of tasks [31], and next-step hint generation [30].
Also, it is the foundation of proving equivalence of task definitions
[16].

2.1 Host and task languages

The TopHat language consists of two two parts: the host language
and the task language. TopHat’s host language is the simply typed
𝜆-calculus with basic types 𝛽 such as booleans, integers, and strings,
and product and sum types thereof. It also contains addresses 𝑎,
which are values on the host layer and can only be manipulated
on the task layers. Most importantly, our host language has no
operation for general recursion, and addresses are restricted to only
contain basic types, that is, no functions nor other addresses. This
means, evaluation of 𝜆 terms is pure and total.

On top of the simply typed 𝜆-calculus, TopHat builds a task
language. Its grammar is given in Figure 1. Terms 𝑣 are values and

2https://github.com/timjs/tophat-proofs
3https://github.com/timjs/tophat-haskell

Editors
𝑑 ::= □𝜈𝛽 | ⊟𝜈𝑏 | □◦𝜈 𝑏 – unvalued, valued, read-only

| ⊞𝜈𝑎 | ⊞◦𝜈 𝑎 – shared, read-only
Tasks

𝑡 ::= 𝑑 | ■𝑣 |  – editor, done, fail
| 𝑣1 • 𝑡2 | 𝑡1 ▶ 𝑣2 – transform, step
| 𝑡1 ▶◀ 𝑡2 | 𝑡1♦𝑡2 – pair, choose
| ▷◁𝜈𝑡0 [𝑡] – pool
| share 𝑏 | 𝑎1 := 𝑏2 – share, assign

Figure 1: Grammar of TopHat’s task language.

𝑏 basic values of the host language. In the following paragraphs, we
discuss the operators in the task language. For more details about
types and expressions in the host language, we refer to previous
work [42].

2.2 Editors

Editors are the endpoints of tasks, used to interact with end users.
They are an abstraction over input fields or widgets, as seen in web
frameworks and top toolkits. Editors are typed, which means that
in an Int editor, users can really only fill in integers.

Editors come in multiple flavours. Unvalued editors □𝛽 do not
contain a value yet. They need to be filled with a value of the
appropriate type 𝛽 . Valued editors ⊟𝑏 do contain a value 𝑏, which
can be modified by users. Read-only editors □◦ 𝑏 also contain a value
𝑏, but can only be viewed by users and not modified. We discuss
editors on shared data in Section 2.4.

To distinguish editors at runtime, they are named by unique
names 𝜈 . Running programs receive inputs which are basic values
together with the unique name of the editor ment to receive the
value. In examples, we omit names on editors if they are not needed
in that context.

Example 2.1 (Editors). The simple program 𝑡0 = □𝑘1String is a
task to fill in data of type String. Users see this as an empty input
field on their screen. Typing in the the input ”Helloreader” in this
field, sends the input 𝑘1!”Helloreader” to program 𝑡0. TopHat’s
semantics will then rewrite program 𝑡0 to 𝑡1 = ⊟𝑘1”Helloreader”.
This process of entering string data can continue indefinitely.

2.3 Combinators

TopHat’s combinators join smaller task into bigger ones. Combi-
nators come in two main forms: sequential and parallel.

The main sequential operator is a step from task 𝑡1 to its con-
tinuation 𝑣2, denoted by 𝑡1 ▶ 𝑣2. Here, 𝑣2 is a pure function which
calculates the next task to be performed based on its arguments.
When this calculated task happens to be the fail task ( ), the step
is not made and we stay working on 𝑡1.

A task to check age restrictions, could be programmed as follows.

□Int ▶ 𝜆𝑛. if 𝑛 < 18 then  else □FormData

This task indefinitely asks to enter an age, and only continues to
the next task of filling out the form data if the entered number is
higher than 18.

https://github.com/timjs/tophat-proofs
https://github.com/timjs/tophat-haskell
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The transform combinator 𝑣1•𝑡2 transforms the observable value
of a task 𝑡2 into something new by mapping the pure function 𝑣1
over the value of 𝑡2. As an example, take the task trafficLight below.

type Light = [Green, Red]
let trafficLight = 𝜆x.(if x then Green else Red) • □Bool

This initially does not have an observable value. It asks users to
enter a boolean True or False, but returns one of the colours Green
or Red by mapping a lambda over the task □Bool.

The parallel combinators also come in three forms: pair, choose,
and pool. Pairing two task 𝑡1 ▶◀ 𝑡2 let us work on both 𝑡1 and
𝑡2 interleaved. The observed value of both tasks is combined in
a tuple if both are available, otherwise, it does not have a value.
So, □◦ ”Cat” ▶◀ ⊟True has the observable value {”Cat”,True}, but
□◦ ”Cat” ▶◀ □Bool has no initial observable value.

Choosing between two tasks, 𝑡1♦𝑡2, also means we can work on
both tasks interleaved. However, the observed value is the value of
𝑡1 if it is available, otherwise, it chooses the value of 𝑡2. For example,
□Int♦ ⊟ 42 immediately normalises to ⊟42, because □Int does not
have an observable value. If both values are unavailable, this also
does not have a value.

Both pairing and choosing are static combinators, i.e. the number
of tasks to work on is specified at development time and tasks
cannot be added or deleted at runtime. This can be achieved by
using task pools, denoted ▷◁𝜈𝑡0 [𝑡]. Task pools can receive inputs
from users, therefore they need to be identifiable by a name 𝜈 . They
are parametrised by a template task 𝑡0. Upon receiving an add-input,
this template task is added to the task list [𝑡]. Task in this list can
also be dynamically removed by sending a remove-input.

2.4 Sharing data

Note that, till now, data could only be passed from task to task
sequentially: when groups of tasks finish, resulting values can be
used to calculate continuations. This is too restrictive to describe
general workflow systems, where parallel workflows need to react
on data from each other. Therefore, data in top specifications can
be shared.

Shared data is introduced by share 𝑏, which allocates the basic
value 𝑏 in memory and returns its address 𝑎. Using this 𝑎, multiple
tasks can watch the same data. For example, shared editors ⊞𝑎 watch
address 𝑎, show the data at 𝑎 to end users, and allow them to change
it. Similarly, read-only shared editors ⊞◦ 𝑎 also watch an address 𝑎,
but end users cannot change its data. The application itself can set
addresses to any basic value using 𝑎1 := 𝑏2.

2.5 Observations

Tasks form syntax trees which can be observed. The most important
observation on tasks is their current value. This is a partial function
V from task trees to values. For example, unvalued editors like
□Bool do not have a value, while valued editors like ⊟True have a
value. Value observations are defined recursively on task trees. No-
tably steps never have a value, as we cannot tell what continuation
it will evaluate to.

Tasks can be observed to be failing (F ) or not. The fail task  
is failing, as is the paring of fail tasks  ▶◀  , these tasks cannot
be worked on. However, the task  ▶◀ □Int is not failing, as the

handle (−→)
inputs (I)

rendering (R)
interact (=⇒)

fixate (⇓) watching (W)

normalize (↓) failing (F )
value (V)

evaluate (

↦→

)

(read 𝑥 –• 𝑦 as ‘𝑥 is used by 𝑦’)

external layer

internal layer

host layer

Figure 2: Overview of semantic layers, relations and func-

tions in TopHat.

second element is a task that can be worked on. TopHat’s semantics
ensure steps are never made to failing tasks.

Other observations on tasks are the set ofwatched addresses (W),
and the possible inputs that can be send to a task (I). Also, the ren-
dered (graphical) user interface can be modelled as an observation
(R).

2.6 Semantic layers

TopHat semantics is defined in three layers: the host layer, the
internal layer, and the external layer. These are depicted in Figure 2.
At the bottom, there is the host layer, which evaluates pure lambda
terms. On top of that, there are two task layers reasoning about the
task language. The semantic arrows in the internal layer prepare a
task for user interaction. The semantic arrows in the external layer
do the actual handling of user inputs. At the right side of Figure 2,
we can see the observations that play a role on that layer. Adding
features to the task layer, should not alter the semantics of the host
language and vice versa.

3 Analysing real-world top applications

top and iTask in particular have a very long history with many
published case studies, examples, support applications and even
some commercial use. In order to get some insight in real-world
top combinator usage, we did a quantitative analysis of all real-
world TOP applications or fragments. In this section we explain the
method used to do this analysis, present our results, and for each
category of combinators we describe similarities and differences
between TopHat and iTask. We finalize the section with a short
discussion of our findings.

3.1 Method

To gather top applications, we analysed little over 50 published
papers on top, mainly about iTask but also a handful on mTask. Of
those papers, we where able to recover 13 applications or example
sets either from the provided artifact, by digging into the version
control history of the iTask framework, or by asking the authors for
a copy. Additionally, we extracted one application and an example
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Table 1: List of analysed real-world applications.

name description

conf2009 a conference management system designed to teach students iTask at the AFP 2008 school [35].
itasks22009 a set of example programs bundled with the iTask 2 system [24].
esmviz2011 a visualisation tool for testing a simplified version of iTask,written in iTask [18].
gin2012 the frontend for GiN, a graphical interactive applications to design tasks [13].
incidone2012 an incident report application for coordinating rescue situations [23].
trax2013 a single-player puzzle game designed to demonstrate the elegance en ergonomics of top [1].
tonic2014 the fronted for Tonic, a static and dynamic visualisation tool for iTask tasks [48].
ligretto2014 a multi-user card game designed to demonstrate the scalable vector graphics integration in iTask [2].
tasklets2015 a set of bigger examples for executing small tasks in the browser using TaskLets and EditLets [8, 9, 11].
shipadven- an interactive fire-extinguishing game situated on a naval ship created to demonstrate task-oriented software

development with a non-trivial case study [46].ture2017

serviceeng- a case study to showcase the distributed extension of iTask. It is an application to manage and perform job allocation
for service engineers [33].ineer2017

taxman2018 a workflow system for entering solar panel reimbursements, designed after specifications provided by the Dutch tax
office [47].

cws2023 a smart campus monitoring iot system prototype designed after specifications given by the University of Glasgow. It is
written in both iTask and mTask, the latter runs on microcontrollers [28].

admin2024 a collection of task workflows for the iTask system to administrate the server itself [37].
examples2024 a snapshot of the set of example programs bundled with the iTask system [37].
top2024 an industrial deployed GIS application developed by TOP Software B.V. of around 110 kLOC.

set from the current version of the iTask framework.4 Finally, we in-
cluded the analysis of a commercial geographic information system
(gis) application. This results in a total of 16 analysed applications,
which are all listed in Table 1.

The 15 published or publicly available real-world top applica-
tions have a total of 30 kLOC (source lines of code). The commercial
application consists of around ±110 kLOC. This demonstrates that
the programs at least have quite some developer effort that was put
into them [40]. We do not draw conclusions on how realistic every
application is based on the number of LOC, as that metric is not
necessarily a realistic measure for that purpose [3]. The commercial
application and the support applications of iTask on the other hand
are realistic applications by definition because they are used by
many users and are constantly adapting to current needs.

In order to analyse the combinator usage, we created a program
that recursively scans all modules and keeps track of the combinator
usage. It does so by parsing the module with the use of the Clean
compiler and looks up every identifier to see whether it is a known
combinator. The list of known combinators is compiled by hand
and enumerates all known task combinators and their category.
The direct occurrences of the iTask super combinator parallel (1
in the commercial and 19 in the rest) where hand checked on a
case-by-case basis to determine if the use really required to use
this super combinator or could be rewritten to use simpler derived
combinators. Sometimes the super combinator parallel is used for
ergonomics and the behaviour could be expressed otherwise. The
analysis was ran locally on the applications where the source code
was available to us. For the commercial application we asked the
company to run the tool on their source code since it is proprietary.

4The iTask framework is found here: https://gitlab.com/clean-and-itasks/itasks-sdk.

Table 2: Distribution of combinator categories.

category subcategory num % of parallel % of total

sequential — 2270 — 60.76
transform — 825 — 22.07
parallel or 282 45.41 7.55

and 187 30.11 5.01
detach 67 10.79 1.79
reflect 39 6.28 1.04
pool 38 6.12 1.02
rest 8 1.29 0.21
total 621 100.00 16.62

exception — 20 — 0.54

total — 3736 — 100.00

3.2 Results

In total, 140 kLOC from of 395 modules was automatically analysed
resulting in a total of 3736 uses of task combinators. These task
combinators are divided into four categories: sequential combina-
tion (Section 3.4), transformation of tasks (Section 3.5), parallel
combination (Section 3.6), and exception handling (Section 3.7).
The parallel combinator is furthermore split up into six categories:
disjunctive (or) and conjunctive combination (and) (Section 3.6.1),
detach behaviour (Section 3.6.2), reflect behaviour (Section 3.6.3),
pool behaviour (Section 3.6.4), and the rest (Section 3.6.5). Table 2
shows the results of this analysis. The following sections details
on the different aspects and combinators and how they relate to
TopHat’s.

https://gitlab.com/clean-and-itasks/itasks-sdk
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3.3 Representation of task values and sdss

Before diving into the combinators, we first have to discuss the
differences between task value representation in iTask and TopHat.
In both systems, tasks have observable task values. However, in
TopHat a task either has a value or not, in iTask a task value also
has a stability. The definition for task values as used in iTask is
presented in Listing 1. An unstable task value signifies that it can
change in the future, a stable task value cannot but this is in no
way guaranteed by the iTask system.

:: TaskValue a = NoValue | Value a Stability

:: Stability :== Bool

Listing 1: Task value data type in iTask.

Stability of tasks as used in iTask can in TopHat be mapped on
the task conditions of Klijnsma and Steenvoorden [16, §5] where
stable is finished steady, unstable is finished unsteady and no value
is running. In TopHat, stability can be simulated by yielding a tuple
of the real task value and a Bool representing the stability.

Furthermore, the data type for sdss in iTask (simplified to Shared

a) separates a read type, a write type and a parameter type [10].
Lijnse and Plasmeijer [25] introduced editors with a separate read
and write type as well but comparing this to TopHat is beyond the
scope of this paper. In our examples, we assume that the read type
and the write type are the same parameter.

3.4 Sequential combinators

Of all combinators, the vast majority (60.76%) are sequential com-
binators. All sequential combinators in iTask are derived from one
super combinator, step, which signature is shown in Listing 2.5 This
combinator has two arguments: a left-hand side, the task to execute
first; and a right-hand side, a task continuation. This construction
allows the right hand side to observe the task value of the left-hand
side and act upon it. There are four different types of continuations
(also listed in Listing 2):

(1) OnValue is used to perform the stepwithout user intervention,
just by a predicate on the task value, we call this an internal
step;

(2) OnAction is only triggered when the user performs an action,
e.g. click on a button, still a predicate is used to determine
whether the button is enabled or not, we call this an external
step;

(3) OnException, and (4) OnAllExceptions are used to step when
a certain exception occurs (see Section 3.7).

Besides the ability to catch exceptions, there seemingly is a
difference between the iTask sequential combinator and TopHat’s
(▶). Firstly, TopHat does not explicitly support external steps, only
internal ones. External steps are simulated with normal editors.
Pushing a button, for example, is simulated with:

□Unit ▶ 𝜆{}. 𝑡cont

5All types in iTask have a class collection iTask that contains derivable type classes
for printing, storage, editors and equality. From now on we will omit these class
constraints for readability of the type signatures.

(>>*) :: (Task a) // Current task

[TaskCont a (Task b)] // Continuation list

� Task b

:: TaskCont a b

= OnValue ((TaskValue a) � ?b)

| OnAction Action ((TaskValue a) � ?b)

| ∃.e: OnException (e � b) & iTask e

| OnAllExceptions (String � b)

Listing 2: Super sequential combinator in iTask.

Secondly, in iTask one can create task continuations that continue
even if the left-hand side task has no value. While this is quite
a pathological case because the left-hand side task only gets one
normalisation step, it is possible to implement this in TopHat as
well, using the fact that ■Unit always has a value:

(𝑡♦■Unit) ▶ 𝜆_. 𝑡cont
In general, it is possible to expose the no value state of tasks in Top-
Hat, by hoisting or exposing the task value as a sum type together
using the fact that ♦ is left-biased:

expose 𝑡 = (Value • 𝑡) ♦■NoValue
Furthermore, the way iTask prevents or guards a step is also a

bit different but related. In iTask, the Maybe6 type is used whereas
in TopHat, failure is an observation of the resulting task using F ,
i.e.  .

3.5 Transform combinators

Transform combinators comprise around 22.08% of the entire com-
binator base. These combinators allow the programmer to apply a
pure function to the task value of the task. In iTask, transform com-
binators are all derived from the super combinator transformError
seen in Listing 3.7 Not only does this function allow to transform the
task value, it also allows you to inject exceptions (see Section 3.7).

transformError :: // | Transformation function

((TaskValue a) � MaybeError TaskException (TaskValue b))

(Task a) // Current task

� Task b

Listing 3: Super transform combinator in iTask.

Other than the option to inject exceptions, the seeming difference
between this super combinator and TopHat’s (•) is the ability to
transform no value into a value and the other way around. However,
both can be expressed with TopHat as well. Using expose shown
in Section 3.4, the existence of a task value is exposed. Then a
transform function using the exposed value can be applied. The
question is then how to lower the hoisted task value back into the
task. Converting a NoValue to a task without a value can be done
using a step. For convenience, as we will need it later, we define a
new derived combinator for censor (⌊𝑡⌋). Censoring a task 𝑡 , means
6In Clean ? is the builtin strict Maybe type: :: ? a = ?None | ?Just !a
7The error type in Clean is defined as :: MaybeError e a = Error e | Ok a.
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we hide its value for the outside world. In TopHat, we accomplish
this by attempting a step to the fail task. This step is never made,
because TopHat’s semantics use  to signal an impossible step.
Also, steps do not have a value, therefore censoring the value of 𝑡 .

⌊𝑡⌋ = 𝑡 ▶ 𝜆_.  
Converting a hoisted task value back into a task value in general

is not possible. However, it can be done in specific cases using a
step (▶) in TopHat, but that freezes the value:

freeze 𝑡 = 𝑡 ▶ 𝜆𝑥 . case 𝑥 of Value 𝑥 ↦→ 𝑥

NoValue ↦→  

3.6 Parallel combinators

16.62% of the combinators are parallel combinators and they typi-
cally appear high up in task trees. Parallel combinators perform the
child tasks at the same time, but not necessarily truly in parallel. For
example, in iTask, but also in TopHat, the user interfaces of the
children are combined and presented to the user. Event handling is
strictly sequential though and left biased.

All parallel combinators in iTask are implemented using the
super combinator parallel (see Listing 4). This combinator is im-
plemented as a function with two arguments. The first argument is
an initial list of not just ordinary tasks but ParallelTasks. These are
functions that, when given a SharedTaskList, produce ether a regu-
lar task (Embedded), or a detached task (Detached, see Section 3.6.2).
This SharedTaskList can be used to observe the task values of all
siblings and add, remove, or even replace tasks at will. The second
argument is a list of task continuations that operate on task values
of every task in the list and produce parallel tasks as continuations
that are added to the task list as a new child.

Parallel tasks can use the SharedTaskList to manage the paral-
lel combinator, e.g. add, remove or replace tasks. Moreover, the
SharedTaskList is used to observe tasks. This allows for very dy-
namic behaviour that is similar to full control over a process table
in an operating system [36].

:: ParallelTaskType

= Embedded

| Detached Bool TaskAttributes

:: ParallelTask a :== (SharedTaskList a) � Task a

parallel :: [(ParallelTaskType, ParallelTask a)]

[TaskCont [(Int, TaskValue a)]

(ParallelTaskType, ParallelTask a)]

� Task [(Int, TaskValue a)]

Listing 4: Super parallel combinator in iTask.

The parallel super combinator is notoriously difficult to imple-
ment and reason about [19]. Furthermore, it is quite difficult to
use (see for example the implementation of -&&- in Listing 6) so
real-world top applications almost exclusively use derived combi-
nators that we divide into six subcategories. Most of the derived
combinators are expressible in TopHat as well as we will see in the
following sections.

3.6.1 and and or combinators. The simpler derived parallel combi-
nators, disjunction (-||-, -||, and ||-) and conjunction (-&&-) are
used in 45.41% and 30.11% of all parallel combinators. Conjunction
and disjunction are both binary combinators that run the tasks at
the same time in a parallel and combine the task values accord-
ingly. There are also list variants of this combinator available called
allTasks and anyTask. All signatures are shown in Listing 5.

(-&&-) :: (Task a) (Task b) � Task (a, b)

(-||-) :: (Task a) (Task a) � Task a

(-|| ) :: (Task a) (Task b) � Task a

( ||-) :: (Task a) (Task b) � Task b

allTasks :: [Task a] � Task [a]

anyTask :: [Task a] � Task a

Listing 5: And and or derived combinators in iTask.

The simple and- and or-combinators have the same semantics
as TopHats pair (▶◀) and choose (♦) combinators. Due to the com-
plexity of the super combinator, deriving them is not trivial (see
Listing 6). Derived combinators allTasks and anyTask can be ex-
pressed as folds over using ▶◀ and ♦ [42]. Finally, the left and
right censoring variants (-|| and ||-) are derived using the censor
combinator:

𝑡1 -|| 𝑡2 = 𝑡1 ♦ ⌊𝑡2⌋
𝑡1 ||- 𝑡2 = ⌊𝑡1⌋ ♦ 𝑡2

(-&&-) :: (Task a) (Task b) � Task (a, b)

(-&&-) taska taskb = parallel

[ (Embedded, \_ � taska @ Left)

, (Embedded, \_ � taskb @ Right)] [] @? res

where

res (Value [(_,Value (Left a) sa)

,(_,Value (Right b) sb)] _)

= Value (a,b) (sa && sb)

res _ = NoValue

Listing 6: Implementation of the and derived combinator in

iTask.

3.6.2 detach combinators. The third biggest category of combina-
tors is the detach category, spanning 10.79% of the parallel com-
binator category. These combinators are implemented using the
Detached type of parallel task to graft a task tree onto another task
tree. The most popular combinator is the assign combinator (@:,
Listing 7). This assigns a task to a specific user but allows the orig-
inal task to observe the progress: a loose coupling. So the task is
detached and the user can see this incoming task and choose to
attach to the task to work on it.

(@:) :: User (Task a) � Task a

attach :: InstanceNo Bool � Task AttachmentStatus

Listing 7: Assign core combinator in iTask.
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Figure 3: Visualisation of detach behaviour.

Figure 3 illustrates a parallel with a detach task. Task 𝑡𝑝 is a
parallel task, arbitrarily deep in a task tree with several embedded
tasks and one detached task. Detaching the task means separating it
from the task tree but it maintains a loose link that allows progress
to be observed. The task is part of 𝑡𝑝 , but its user interface is not
shown and it cannot be worked on by 𝑡𝑝 . In the figure, 𝑡𝑤 attaches
to the task to work on it.

In the iTask implementation, the parallel combinator uses an sds
to store the list of tasks. sds’s are persistent over execution and data
is serialised using the GraphCopy library for serialising execution
graphs, i.e. Graph Packing [6, 33]. Serialising tasks, i.e. execution
graphs, works well but is not stable across different versions of the
code or even compilations. The commercial application (top2024)
therefore never uses detach behaviour directly but always simulates
it using data. Instead of detaching a task for someone to attach to, a
label is written into an sds. The other user then knows which task
to start from the label and explicitly communicates its value via a
dedicated sds.

Detaching parts of task trees and grafting it to other task trees
is currently not implementable in TopHat. Finding new core com-
binators to implement this remains future work. Its limited form,
as used by the commercial application, can be simulated similarly
using labels.

3.6.3 reflect combinators. Then, there is a category of parallel
combinators called the reflect combinators, with an amount of
6.28% of the total parallel combinators. These combinators utilise
the parallel super combinator to monitor other task’s progress
across control flow. There are three reflection combinators that are
often used shown in Listing 8. All expose the task value in sdss to
provide to a task function.

Feed-forward (>&>) exposes the left-hand side task’s value in an
sds that is passed to the right-hand side task function. The task
value of the right-hand side is considered the task value of the
compound task. Feed-sideways does the same but considers the
task value of the left-hand side as the task value of the compound
task. Finally there is the feed-bidirectional combinator. This ties
a knot between two tasks by exposing the one observable task
value to the other and vice versa. The task value of the combined
task is the pair of the individual tasks, similar to the conjunctive
combinator (-&&- in iTask, ▶◀ in TopHat). In Section 4 we provide
a new TopHat core combinator to implement these combinators.

3.6.4 pool combinators. Pool combinators are combinators that
manage a list of tasks, i.e. shrinking and growing the list by actions

(>&>) :: (Task a) (Shared (TaskValue a)) � Task b) � Task b

(>&^) :: (Task a) (Shared (TaskValue a)) � Task b) � Task a

(<&>) :: ((Shared (TaskValue b)) � Task a)

((Shared (TaskValue a)) � Task b)

� Task (a, b)

Listing 8: Derived reflection combinators in iTask.

of the user. They comprise around 6.12% of all parallel combinators.
The most used combinator in the pool category is the sideStep
(>^*) combinator (Listing 9). This combinator has a similar type
signature to the regular step (Listing 2) only with a different return
type: Task a instead of Task b. Instead of continuing with one of
the continuations, the picked continuation task is added as a child
to the parallel.

(>^*) :: (Task a) [TaskCont a (Task b)] � Task a

Listing 9: Sidestep derived combinator in iTask.

When the TaskConts are just actions, i.e. buttons, this is imple-
mentable using the pool combinator from TopHat (▷◁). Otherwise
it is considered to be rest behaviour.

3.6.5 rest combinators. Then there is the rest category, only span-
ning 1.29% of parallel combinator use. This type of behaviour uses
the parallel combinator to dynamically shrink and grow the task
list without user intervention. Implementing this in TopHat is pos-
sible but many nice properties such as symbolic execution [43] will
be lost.

3.7 Exception combinators

Finally, the last 0.54% of the main categories of combinators con-
cerns exception handling. In iTask, exceptions are caught using
either sequential or parallel combinators, but it is also possible to
catch them using the derived combinators try and catchAll.

Exceptions are also (ab)used as a way of short circuiting execu-
tion. For example, when the left-hand side of a parallel or combina-
tor throws an exception, the right-hand side of the combinator is not
executed any more, the exception prevented that. This is never used
directly and only found in one derived combinator, whileUnchanged
(Listing 10), so it can be considered an implementation detail. This
function has two arguments, the first argument is an sds, the sec-
ond a task function that is restarted each time the sds changes.
Internally it is implemented with an or combinator that is short
circuited.

whileUnchanged :: (Shared a) // SDS to observe

(a � Task b) // Task function

� Task b

Listing 10: The type of iTask’s whileUnchanged function.

Typical use cases of exceptions are easily implementable in Top-
Hat by encoding them as a sum type such as MaybeError. It remains
future work to see how the short circuiting behaviour can also be
implemented.
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3.8 Discussion

The analysis of the large code base showed that TopHat covers
the majority of real-world workflows. All real-world sequential
and transform combinators can be expressed in equivalent TopHat.
This already comprises 82.84% of all combinators. Of the remaining
17.16%, 2.54% is not yet expressible, containing some variants of
the parallel combinator and exceptions. For the reflect behaviour,
we have identified a core combinator that allows us to express this.
The implementation and semantics are shown in the next section.
We leave the detach and exception behaviour for future work.

Further work could be to split out the combinators even more.
For example analysing task continuation usage as well. Alterna-
tively, combinator distribution can be propagated, there are many
derived combinators that use multiple core combinators, this could
be propagated to get a more detailed view of core combinator statis-
tics. Finally, the sdss in iTask are richer and support combinators
as well, it would be interesting to see how they compare to TopHat.

4 Reflection on task values

During the quantitative analysis of the combinator usage in real-
world top applications, we identified a gap. All different reflect
behaviours, comprising 6.28% of the parallel combinator usage, and
possibly some of the rest behaviour, can be expressed with a sin-
gle new core combinator: reflect. In this section, we describe the
observed reflect combinators with examples from the real-world
applications, introduce a reflect core combinator (⊚) with its se-
mantics in TopHat, and finally show how to derive the real-world
combinators from it.

4.1 Reflect derived combinators

There are two combinators that comprise almost all of the reflection
behaviour seen in real-world applications. Those are feed-sideways
(>&^) and feed-forward (>&>), which types we have seen in Listing 8.
They expose task values into an sds so that other tasks can observe
the progress across control flow.

In the analysed examples we see higher-level workflows that
depend on this behaviour, for example in the helper function crud

used in taxman2018 and shipadventure2017. Listing 11 shows
this function. It creates a task with which one can execute create/
read/update/delete (crud) operations on an sds. The left-hand side
of the combinator is a task for selecting the key of the entry you
want to edit. The right-hand side of the combinator is an expression
that creates a task from the currently selected key. All operation on
the map are guarded except for Create for it needs no key. When the
result of the database operations are not needed for the compound
task, feedSideways is used. Changing it to feedForward changes the
task value to the result of the operation once it is finished. The
generated resulting application is shown in Figure 4.

Furthermore, feedForward is useful as a debugging tool when
doing rapid prototyping, an often described use case of iTask [20].
Such usage has for example been seen in tasklets2015 codebase.
In this example, feedForward is combined with the withSelection

function. Listing 12 shows the type of this function and an example
of its usage. It results in the user interface shown in Figure 5.

Recently, a new derived reflection combinator, feed-bidirectional-
ly (<&>), has been added to the iTask system. This novel combinator

1 crud :: (Shared (Map k v)) � Task k

2 crud sds = (enterChoiceWithShared [ChooseFromList id]

3 (mapRead keys sds)

4 <<@ Title " Entries in database"
5 >&^ \mk�forever $ viewSharedInformation [] mk

6 <<@ Title "Current select ion "
7 >>* [ OnAction (Action "Create ") (always createTask)

8 , OnAction (Action "Read") (hasJust readTask)

9 , OnAction (Action "Update") (hasJust updateTask)

10 , OnAction (Action "Delete ") (hasJust deleteTask)

11 ])

12 where

13 hasJust f = ifValue isJust (f o fromJust)

14 createTask = enterInformation []

15 <<@ Label "Enter the key and value"
16 >>? \(k, v)�upd (put k v) sds

17 readTask k = · · ·
18 · · ·

Listing 11: A simple crud interface to an sds

withSelection :: (Task c) // When there is no value yet

(a � Task b) // When there is a value

(Shared (TaskValue a)) // The SDS reflecting the value

� Task b

withSel :: Task Int

withSel = enterInformation [] <<@ Label "Enter a number"
>&> withSelection (viewInformation [] "Nothing entered ")

(\v�viewInformation [] v <<@ Label "You entered ")

Listing 12: The type of withSelection and an example of

debugging a task value.

ties a knot between two tasks, letting them observe each other’s
result. This is typically used high up the tree and is due to its
novelty only observed in top2024. The task value in that case often
represents some kind of progress or some kind of status.

4.2 Reflection in TopHat

We observed that these three combinators, feed-forward, feed-
sideways, and feed-bidirectionally, in iTask all reflect the value
of a task into an sds. That is, other tasks can see and react upon
the value of the reflected task by watching this sds or address. To
accommodate this, we extend TopHat with a new core combinator,
reflect:

𝑡 ::= . . . | ⊚𝑎 𝑡

where the value of task 𝑡 is reflected at address 𝑎.
The typing rule for the reflect combinator is as follows:

T-Reflect
Γ, Σ ⊢ 𝑎 : Ref (Maybe 𝜏) Γ, Σ ⊢ 𝑡 : Task 𝜏

Γ, Σ ⊢ ⊚𝑎 𝑡 : Task 𝜏

Here, Ref 𝜏 is the type of references to 𝜏 , and Task 𝜏 is a task
containing a value of type 𝜏 . As tasks can or cannot have a value,
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(a) Without a selection,

only the Create button is enabled.

(b) When selecting a key,

the Read, Write and Update buttons are enabled as well.

Figure 4: The interface for the crud task.

(a) When there is no task value yet,

it shows only the label Nothing entered.
(b) When there is a task value,

it shows the label You entered and the current task value.

Figure 5: The user interface of Listing 12.

we need to take this into account and use the standard Maybe type
to wrap the reflected value in the reference.

Next, we discuss the implementation of reflection in TopHat’s
semantics. Of the semantic arrows shown in Section 2, only the
normalisation (↓) and handling (−→) semantics need to be extended.
However, all observations need to be extended to support reflection
on tasks.

4.2.1 Normalisation and handling. As stated in Section 2.6, nor-
malisation is the process of preparing tasks for user input. They
form a subset of tasks 𝑡 . Normalising ⊚𝑎 𝑡 in state 𝜎 comprises:

(1) normalising 𝑡 in 𝜎 to normalised task 𝑛′, delivering a new
state 𝜎′ and some dirty addresses 𝛿 ′;

(2) adding 𝑎 to the dirty addresses, as we modified it;
(3) setting address 𝑎 to the value of 𝑛′, which is precisely the

reflection behaviour we like to model;
(4) returning a new reflect combinator on address 𝑎, but now

on the normalised task 𝑛′.
The final derivation rule for normalisation reads:
N-Reflect

𝑡, 𝜎 ↓ 𝑛′, 𝜎′, 𝛿 ′

⊚𝑎𝑡, 𝜎 ↓ ⊚𝑎 𝑛′, [𝑎 ↦→ 𝑣]𝜎′, 𝛿 ′ ∪ {𝑎}
𝑣 =

{
Just V(𝑛′, 𝜎 ′ ) if defined
Nothing otherwise

Here we use constructors Just and Nothing to take into account
that normalised task 𝑛′ can or cannot have a value.

To handle inputs 𝜄 by reflections we simply pass the input on
to the inner, now normalised, task 𝑛. The result is now a not-
normalised task 𝑡 ′.

H-Reflect
𝑛, 𝜎

𝜄→ 𝑡 ′, 𝜎′, 𝛿 ′

⊚𝑎 𝑛, 𝜎
𝜄→ ⊚𝑎 𝑡 ′, 𝜎′, 𝛿 ′

4.2.2 Observations. Observations on reflections are mostly dele-
gating to the same observation on the inner task. Only W also
adds address 𝑎 to the watch set. Note that all observations, except
F , actually operate on a normalised task 𝑛.

F (⊚𝑎 𝑡) = F (𝑡)
V(⊚𝑎 𝑛, 𝜎) = V(𝑛, 𝜎)

I(⊚𝑎 𝑛) = I(𝑛)
W(⊚𝑎 𝑛) = W(𝑛) ∪ {𝑎}
R(⊚𝑎 𝑛, 𝜎) = R(𝑛, 𝜎)

As the value of𝑛 is reflected at address 𝑎, one could think that the
value at address 𝑎 is always the same as the value of the reflected,
normalised task 𝑛:

V(⊚𝑎 𝑛, 𝜎) = V(𝑛, 𝜎) = 𝜎 (𝑎) Not true!

Here 𝜎 (𝑎) looks up the value stored at address 𝑎 in state 𝜎 . Sadly,
this is not true. Take for example the following task:

share Nothing ▶ 𝜆𝑎. (⊚𝑎 ■37) ▶◀ (𝑎 := 42)

This should reflect the value 37 in 𝑎 but also sets 𝑎 to 42. Because
the semantics of the pairing combinator (▶◀) is defined to be left-
to-right, normalising 𝑎 := 42 is done after normalising ⊚𝑎 ■37.
Therefore, the value stored in 𝑎 is 42 and not 37 and the value of
the left task is not reflected in the address. This could be solved by
introducing read-only memory locations in the host language.

4.3 Deriving the feed combinators

With the semantics of reflection in place, we can now define the feed-
forward, -sideways, and -bidirectionally combinators. For this, we
need one helper on tasks, censor (⌊𝑡⌋), which we already discussed
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in Section 3.5 and repeat its definition here for convenience:

⌊𝑡⌋ = 𝑡 ▶ 𝜆_.  

Nowwe can define feed-forward (=), -sideways (<), and -bidirec-
tionally (?) using censor as follows:

𝑡 = 𝑒 = share Nothing ▶ 𝜆𝑎. ⌊⊚ℎ𝑡⌋♦𝑒 𝑎
𝑡 < 𝑒 = share Nothing ▶ 𝜆𝑎. ⊚ℎ 𝑡♦⌊𝑒 𝑎⌋

𝑒1 ? 𝑒2 = (share Nothing ▶◀ share Nothing)
▶ 𝜆{𝑎1, 𝑎2}. ⊚𝑎1 (𝑒1 𝑎2) ▶◀ ⊚𝑎2 (𝑒2 𝑎1)

To feed-forward 𝑡=𝑒 or feed-sideways 𝑡<𝑒 , we start by sharing
the value Nothing at address 𝑎, this address is then used by the
reflect combinator to reflect the value of task 𝑡 . However, in case of
feed-forward, we are not interested in the result of this task, but
in the result of the task computed by 𝑒 𝑎. Therefore, we censor the
left-hand side of the choice operator. This results in the right-hand
side at the moment it produces a value. In case of feed-sideways,
this is exactly the other way around, we censor the right-hand side
to result only the left-hand side reflected task.

In case of feed-bidirectionally 𝑒1 ? 𝑒2, we start sharing at two
addresses, 𝑎1 and 𝑎2. We reflect the value of 𝑒1 in 𝑎1, and of 𝑒2 in
𝑎2. Note we pass the addresses reflecting the other task to each
expressions.

5 Related work

In the quantitative and qualitative analysis of this paper, around 50
top related papers and case studies where extracted. We are quite
confident that, barring at most one or two papers, this is the entire
body of research on top. However, there is some other related work.

Functional reactive programming (frp) is a programming style
that at first glance looks similar to top. The term was first coined
by Elliott and Hudak [12] as a technique to declaratively specify
animations. Since then, many implementations can be found in
other domains [5], including workflow modelling [39]

Where top focusses on collaboration, frp is focussed on data
dependencies and behaviours of them. Similar to top, vanilla frp
can give no guarantees on memory usage, but extensions such as
arrowised frp [32] or modal frp [4].

Workflow modelling in programming languages is a well-trodden
field. With top, interactive collaborative systems are programmed
using a high abstraction level making it very suitable to model
workflows. van der Aalst et al. [49] and Russell et al. [41] provide
an overview of languages and frameworks and defines a benchmark.

Constraint-based approaches to model business processes, such as
Declare [29] and Ampersand [15] follow a different approach to top.
Their semantics can be characterized with logic-based formalisms
like relation algebras. Using these formalisms, one describes rules
to keep information in the system consistent. Instead of specifying
a workflow, it is automatically derived from this specification. Al-
ternatively, timed Dynamic Condition Response (DCR) graphs [14]
are a way of specifying workflows which allow formal verification
of both safety and liveness properties.

6 Conclusions

We analysed sixteen real-world top applications. Thirteen came
from literature, two are internal to iTask and one is a commercial
gis application. Together, they total 140 kLOC defined in a total of
395 modules. From the combinator usage, several gaps are identified
between top and iTask.

We find that over 96.50% of combinator usage of real-world top
programs can be expressed in TopHat. However, as most of these
examples make use of recursion, they can only be expressed in an
extended version of TopHat without termination assurance. In
practice, this means the examples can be executed, but TopHat’s
symbolic execution engine is not guaranteed to terminate.

We observed that parallel combinators are used way less than
sequential combinators (±16% versus ±60%). Furthermore, we see
that parallel combinators typically appear higher up in the task
tree, giving some indication that they are used to describe workflow
higher up, i.e. are more important. With the new reflect combinator,
we capture an extra 6% of all parallel combinator uses in real-world
application.

6.1 Future work

Detaching tasks, i.e. separating tasks from their task tree and al-
lowing other task trees to take over the task, is something that is
available in iTask but not in TopHat. It would be interesting to
see if and what core combinator we would need in order to express
this behaviour as well.

sdss in iTask are much richer and support combinators as well,
it would be interesting to see how they compare to TopHat.

Finally, in iTask, there is an exception mechanism available. For
example, a task may throw an exception, this exception bubbles
up and is caught by a sequential combinator. All real-world usage
of exceptions can easily be simulated by using an Either or Error
type but one. The exception mechanism is used to short-circuit
derived combinators such as whileUnchanged. Figuring out how to
shortcircuit combinators in TopHat is future work.
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