
Reducing the Power Consumption of IoT
with Task-Oriented Programming

Sjoerd Crooijmans, Mart Lubbers(B) , and Pieter Koopman

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Nijmegen, The Netherlands

sjoerd@scrooijmans.nl, {mart,pieter}@cs.ru.nl

Abstract. Limiting the energy consumption of IoT nodes is a hot topic
in green computing. For battery-powered devices this necessity is obvi-
ous, but the enormous growth of the number of IoT nodes makes energy
efficiency important for every node in the IoT. In this paper, we show how
we can automatically compute execution intervals for our task-oriented
programs for the IoT. These intervals offer the possibility to save energy
by bringing the microprocessor driving the IoT node into a low-power
sleep mode until the task need to be executed. Furthermore, they offer
an elegant way to add interrupts to the system. We do allow an arbitrary
number of tasks on the IoT nodes and achieve significant reductions of
the energy consumption by bringing the microprocessor in sleep mode
as much as possible. We have seen energy reductions of an order of mag-
nitude without imposing any constraints on the tasks to be executed on
the IoT nodes.

Keywords: Sustainable IoT · Green computing · Task-oriented
programming · Edge computing

1 Introduction

The Internet of Things (IoT) is omnipresent and powered by software. Depend-
ing on whom you ask, the estimated number of connected IoT devices reached
between 25 and 100 billion in 2021. IoT systems are traditionally designed
according to multi-layered or tiered architectures. As a consequence, discrete
programs written in distinct languages with different abstraction levels power
the individual layers, forming a heterogeneous system. The variation in compo-
nents makes programming IoT systems complicated, error-prone and expensive.

The edge layer of IoT contains the small devices that sense and interact with
the world and it is crucial to lower their energy consumption. While individual
devices consume little energy, the sheer number of devices in total amounts to
a lot. Furthermore, many IoT devices operate on batteries and higher energy
consumption increases the amount of e-waste as IoT devices are often hard to
reach and consequently hard to replace [13].

To reduce the power consumption of an IoT device, the specialized low-
power sleep modes of the microprocessors can be leveraged. Different sleep modes
c© Springer Nature Switzerland AG 2022
W. Swierstra and N. Wu (Eds.): TFP 2022, LNCS 13401, pp. 80–99, 2022.
https://doi.org/10.1007/978-3-031-21314-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21314-4_5&domain=pdf
http://orcid.org/0000-0002-4015-4878
http://orcid.org/0000-0002-3688-0957
https://doi.org/10.1007/978-3-031-21314-4_5

Reducing the Power Consumption of IoT with Task-Oriented Programming 81

achieve different power reductions because of their different run time character-
istics. These specifics range from disabling or suspending Wi-Fi; stopping power-
ing (parts) of the RAM; disabling peripherals; or even turning off the processor
completely, requiring an external signal to wake up again. Determining when
exactly and for how long it is possible to sleep is expensive in the general case
and often requires annotations in the source code, a real-time operating system
or a handcrafted scheduler.

Task-oriented programming (TOP) is a novel declarative programming para-
digm with the potential to solve many of the aforementioned problems. In this
paradigm, tasks are the basic building blocks and they can be combined using
combinators to describe workflows [15]. This declarative specification of the pro-
gram only describes the what and not the how of execution. The system exe-
cuting the tasks takes care of the gritty details such as the user interface, data
storage and communication [16]. An example of a TOP language is the iTask
system, a general-purpose framework for specifying multi-user distributed web
applications for workflows [14]. iTask is implemented as an embedded domain-
specific language (DSL) in the functional programming language Clean [4,6].

mTask lies on the other side of the spectrum and aims to solve semantic
friction in IoT. It is a domain-specific TOP language and system specifically
designed for IoT devices, implemented as an embedded DSL in iTask. Where
iTask abstracts away from details such as user interfaces, data storage, and
persistent workflows, mTask offers abstractions for edge layer-specific details
such as the heterogeneity of architectures, platforms and frameworks; peripheral
access; and multitasking. Yet, it lacks abstractions for energy consumption and
scheduling. In mTask, tasks are implemented as a rewrite system, where the work
is automatically segmented in small atomic bits and stored as a task tree. Each
cycle, a single rewrite step is performed on all task trees, during rewriting, tasks
do a bit of their work and progress steadily, allowing interleaved and seemingly
parallel operation. After a loop, the run-time system (RTS) knows which task is
waiting on which triggers and is thus able to determine the next execution time
for each task automatically. Utilising this information, the RTS can determine
when it is possible and safe to sleep and choose the optimal sleep mode according
to the sleeping time. For example, the RTS never attempts to sleep during an
I2C communication because I/O is always contained within a rewrite step.

1.1 Research Contribution

This paper shows that with minor changes to the mTask language from the
perspective of the TOP programmer, the energy consumption of the program’s
execution can be significantly reduced. We show that with an intensional analysis
of the task trees at run time, the mTask scheduler can automatically determine
the optimal sleep time and sleep mode. Not all tasks have a default rewrite
rate that works in all situations, so variants of tasks are added in which the
programmer can fine-tune the polling rate. Furthermore, we add an interface
to (hardware) interrupts to the mTask language, allowing the program to be
notified in case of an external event, resulting in more reactive programs.

82 S. Crooijmans et al.

2 Task-Oriented Programming

TOP is a high-level declarative programming paradigm to specify distributed
interactive multi-user systems [14,15]. Developers describe in TOP the work to
be done by the systems or users in the form of abstract tasks. Implementation
details, like the encoding of data during communication, are handled by the
system rather than by the TOP programmer. Tasks describe a unit of work
ranging from reading a single sensor to an entire IoT system. Tasks are rewrite
systems that produce a result after each step. Possible task results are:

No value if the task has no observable value for other tasks. For example, a
web-editor that is empty or incomplete is a task with a NoValue result.

Unstable if the task has an intermediate observable value. This value is by
construction properly typed and can change in the future. Examples are a
properly filled out web-editor or a reading a sensor.

Stable if the task has a final observable value. This value is by construction
properly typed and fixed. Examples are a properly filled out web-editor after
pressing the Continue button or a task that determines that a temperature
sensor has passed a given threshold.

Basic tasks are the primitive building blocks of a TOP program. Typical
examples are web-editors, reading sensors, waiting some time and controlling
peripherals. Tasks can be composed into bigger tasks by combinators. There are
combinators for the parallel and sequential composition of tasks.

Apart from task results, tasks can also communicate via shared data sources
(SDSs). There are basic tasks to read, write and update such a typed SDS.

2.1 mTask

TOP is also very suited to program nodes in the IoT. However, typical nodes
in the IoT are cheap and small microprocessors with a very limited amount of
processing power and memory. Such a system cannot run a web server nor a
browser as a client to execute an iTask program. This is also not necessary,
typical IoT nodes just control a few sensors and actuators. Rather than sending
all sensor readings to some server and the actuator control back from the server
to the IoT node, we want to do a significant part of the computing on the IoT
nodes. This concept is popular under the name edge computing.

To enable TOP on small microprocessors we have created mTask [10,12].
The domain-specific language mTask is also embedded in Clean. In contrast to
iTask, it is not a shallowly embedded DSL but it is a tagless-final style DSL [5].
The target language of iTask is equal to the host language Clean, this is called a
homogeneous DSL [17]. The target code of mTask is byte code which is shipped
to a microprocessor in the IoT and interpreted by the mTask runtime system run-
ning there. Hence, mTask is a heterogeneous embedded DSL. The big advantage
of this approach is that we can carefully control which parts of the application
is mTask code and needs to be shipped to the IoT node. This prevents that

Reducing the Power Consumption of IoT with Task-Oriented Programming 83

all Clean language machinery ends up in such a small system. Moreover, we can
dynamically ship tasks to the IoT nodes without the need to reprogram the flash
memory of those systems. Reprogramming this memory is slow and can be done
only a few thousand times.

The archetypal example of programs running on microprocessors is the blink
example that blinks the single bit display, just a LED, of such systems. In List-
ing 1 we give a slightly more complex example in mTask that blinks two LEDs
at their own slowly changing speed.

blinkTask :: Main (MTask v Bool) | mtask v
blinkTask = declarePin BuiltinLEDPin PMOutput λled1 �

declarePin D0 PMOutput λled2 �

fun λblink = (λ(led, interval, state) �

delay interval
>>|. writeD led state
>>|. blink (led, interval +. lit 1, Not state)

In {main = blink (led1, lit 496, true) .||. blink (led2, lit 8128, true)}

Listing 1. An mTask task to blink two LEDs at their own rate.

The Clean function blinkTask contains the mTask code for the blink task.
It starts by declaring two led objects to represent the output general-purpose
input/output pin to control the LED as output. Next, it declares an mTask
function called blink. This function has the led, delay time and new state of
the LED as arguments. The task in this function is composed of three subtasks.
First, it waits time millisecond by delay. Second, it writes the given state to the
declared output led. Finally, it calls itself recursively with the inverted state as
the argument. In the main expression two of these blink tasks are composed in
parallel with the .||. combinator. The lit in the arguments of the subtasks lifts
the given constant from the host language to the embedded DSL.

There are some important differences to the usual C-programs controlling
microprocessors. First, tail-recursive functions are perfectly safe in mTask. Next,
the delay task is not blocking the entire program, but just producing a NoValue

result until the given time has passed.

3 Energy Efficient IoT Nodes

There are various estimates about the number of IoT nodes. What the estimates
have in common is that the number is relatively large and rapidly increasing.
Figure 1 contains a popular estimate of the worldwide number of nodes1. Cur-
rently, there are worldwide just above 40 billion connected IoT devices.

There is a wide variety of IoT nodes. Relative simple single board computers,
like a Raspberry Pi 4, are often used. These are full-fledged computers running
Linux. This operating system enables multithreading and the dynamic uploading
of new applications via remote access. Such a single board computer costs about
AC70 and consumes 4–6W.

1 https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/.

https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/

84 S. Crooijmans et al.

Fig. 1. Number of connected IoT nodes worldwide.

For battery powered nodes, the energy consumption of such a single board
computer is obviously inconveniently high. Considering the number of IoT nodes,
the total energy consumption for all nodes would also be rather high for single
board computers connected to a power outlet. The total annual energy consump-
tion of all IoT nodes would be 1.7 PWh/year if they consume 5W each and are
always available. This is about 6% of the annual electrical energy production
of 26.8 PWh/year2, about 500 times the production of the only Dutch nuclear
power plant3, and 2

3 of the annual production of renewable electricity4.
Fortunately, there are microprocessor based systems that require significantly

less energy, typically 1–500 mW, than single board computers and are very cheap
as well. The price to be paid is that microprocessors are much slower and have a
very limited amount of memory. As a consequence of these bordered capacities,
a microprocessor typically has no operating system or at most special purpose
real-time operating system like FreeRTOS. Despite their limited capabilities,
microprocessors are often more powerful than needed for IoT tasks. This implies
that we can switch them off, or partially off, for some fraction of the time.
Microprocessors have special low power sleep modes to enable energy saving.
The sleep modes as well as the associated energy consumption are model specific.
Table 1 lists some examples for two popular microprocessor boards. The Wemos
D1 mini5 is powered by an ESP8266 and costs about AC6. The Adafruit Feather

2 https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-
world-energy/electricity.html.

3 https://nl.wikipedia.org/wiki/Kerncentrale Borssele.
4 https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/

energy-economics/statistical-review/bp-stats-review-2021-electricity.pdf.
5 https://www.wemos.cc/en/latest/d1/d1 mini.html.

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/electricity.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/electricity.html
https://nl.wikipedia.org/wiki/Kerncentrale_Borssele
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-electricity.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-electricity.pdf
https://www.wemos.cc/en/latest/d1/d1_mini.html

Reducing the Power Consumption of IoT with Task-Oriented Programming 85

Table 1. Current use in mA of two microprocessor boards in various sleep modes.

Component Wemos D1 mini Adafruit Feather M0 Wifi

Active Modem
sleep

Light
sleep

Deep
sleep

Active Modem
sleep

Light
sleep

Deep
sleep

Wi-Fi On Off Off Off On Off Off Off

CPU On On Pending Off On On Idle Idle

RAM On On On Off On On On Low power

Current 100–240 15 0.5 0.002 90–300 5 2 0.005

M0 WiFi6 is powered by an ATSAMD21 and an ATWINC1500 for Wi-Fi, it
costs about AC50.

This table shows that switching the Wi-Fi radio off yields the biggest energy
savings. In most IoT applications, we need Wi-Fi for communications. It is fine
to switch it off, but after switching it on, the Wi-Fi protocol needs to transmit
a number of messages to re-establish the connection. This implies that it is only
worthwhile to switch the radio off when this can be done for some time. The
details vary per system and situation. As a rule of thumb, it is only worthwhile
to switch the Wi-Fi off when it is not needed for at least some tens of seconds.

The data in Table 1 shows that it is worthwhile to put the system in some
sleep mode when there is temporarily no work to be done. A deeper sleep mode
saves more energy, but also requires more work to restore the software to its
working state. A processor like the ESP8266 driving the Wemos D1 mini loses
the content of its RAM in deep sleep mode. This implies that the program itself
is preserved, since it is stored in flash memory, but the entire program state is
lost. When there is a program state to be preserved, we must either store it
elsewhere, limit us to light sleep, or use a microprocessor that keeps the RAM
intact during deep sleep.

For IoT nodes executing a single task, explicit sleeping to save energy can be
achieved without too much hassle. This becomes much more challenging as soon
as multiple independent tasks run on the same node. Sleeping of the entire node
induced by one task prevents progress of all tasks. This is especially annoying
when the other tasks are executing time critical parts, like communication pro-
tocols. Such protocols control the communication with sensors and actuators.
Without the help of an OS, the programmer is forced to combine all subtasks
into one big system that decides if it is safe to sleep for all subtasks.

4 Scheduling Tasks Efficiently

The mTask system enables an elegant solution for these dynamic scheduling and
sleeping problems. To understand the solution, we have to reveal some details
about the mTask implementation. This system consists of two components. First,

6 https://www.adafruit.com/product/3010.

https://www.adafruit.com/product/3010

86 S. Crooijmans et al.

there is the embedded DSL as introduced in Sect. 2.1. Next, there is an exe-
cution environment for those programs running on IoT nodes. This execution
environment is able to execute multiple mTask programs simultaneously, it is a
featherlight domain-specific operating system.

Every mTask program is embedded in an iTask program, a TOP DSL very
similar to mTask. In contrast to mTask, iTask is geared to client server web-
applications. The iTask and mTask components form a single source that is
statically type-checked by the compiler of the host language Clean. The mTask
components determine what is done by the IoT nodes. The surrounding iTask
program determines the IoT node to be used and the moment it is shipped. The
communication between iTask and mTask programs is outside the scope of this
paper, see [11] for details.

A mTask program is dynamically transformed to byte code. This byte code
and the initial mTask expression are shipped to mTask IoT node. For the exam-
ple in Listing 1 there is byte code representing the blink function and main

determines the initial expression.
The mTask rewrite engine rewrites the current expression just a single rewrite

step at a time. When subtasks are composed in parallel, like blink tasks in
Listing 1, all subtasks are rewritten unless the result of the first rewrite step
makes the result of the other tasks superfluous. This yields for our example:

{main = delay 496 >>|. writeD led1 true >>|. blink (led1, 497, false)
.||. delay 8128 >>|. writeD led2 true >>|. blink (led2, 8129, false)}

Listing 2. State of the task from Listing 1 after a single rewrite step.

The mTask node can inspect this expression. It is obvious that nothing will
change the next 496 ms. The system can therefore go to sleep for this period
when there are no other tasks7.

The task design ensures such that all time critical communication with
peripherals is within a single rewrite step. This is very convenient, since the
system can inspect the current state of all mTask expressions after a rewrite
and decide if sleeping and how long is possible. As a consequence, we cannot
have fair multitasking. When a single rewrite step would take forever due to an
infinite sequence of function calls, this would block the entire IoT node. Infinite
sequences rewrite steps, as in the blink example above, are perfectly fine. The
mTask system does proper tail-call optimizations to facilitate this.

4.1 Evaluation Interval

Some mTask examples contain one or more explicit delay primitives, offering a
natural place for the node executing it to pause. However, there are many mTask
programs that just specify a repeated set of primitives. A typical example is the
program that reads the temperature for a sensor and sets the system LED if the
reading is below some given goal.

7 In the implementation a delay d is replaced by a waitUntil (now + d) that com-
pares the clock time of the system with the given start time.

Reducing the Power Consumption of IoT with Task-Oriented Programming 87

thermostat :: Main (MTask v Bool) | mtask v
thermostat = DHT I2Caddr λdht.

{main = rpeat (
temperature dht >>∼. λtemp.
writeD builtInLED (goal <. temp)

)}

Listing 3. A basic thermostat task.

This program repeatedly reads the DHT sensor and sets the on-board LED
based on the comparison with the goal as fast as possible on the mTask node.
This is a perfect solution as long as we ignore the power consumption. The
mTask machinery ensures that if there are other tasks running on the node,
they will make progress. However, this solution is far from perfect when we take
power consumption into account. In most applications, it is very unlikely that
the temperature will change significantly within one minute, let alone within
some milliseconds. Hence, it is sufficient to repeat the measurement with an
appropriate interval.

There are various ways to improve this program. The simplest solution is to
add an explicit delay to the body of the repeat loop, similar to the blink example
in Listing 1. A slightly more sophisticated option is to add a repetition period to
the rpeat combinator. The combinator implementing this is called rpeatEvery.
Both solutions rely on an explicit action of the programmer.

In this paper, we propose a solution that is independent of the help of the
programmer. The key of this solution is to associate dynamically an evaluation
interval with each task. The interval 〈low, high〉 indicates that the evaluation
can be safely delayed by any number of milliseconds in that range. Such an
interval is just a hint for the run time system. It is not a guarantee that the
evaluation takes place in the given interval. Other parts of the task expression
can force an earlier evaluation of this part of the task. When the system is very
busy with other work, the task might even be executed after the upper bound
of the interval. The system calculates the refresh rates from the current task
expression. This has the advantage that the programmer does not have to deal
with them and that they are available in each and every mTask program.

4.2 Basic Refresh Rates

We start by assigning default refresh rates to basic tasks. These refresh rates
reflect the expected change rates of sensors and other inputs. Writing to basic
GPIO pins and actuators has refresh rate 〈0, 0〉, this is never delayed.

4.3 Deriving Refresh Rates

Based on these refresh rates, the system can automatically derive refresh rates
for composed mTask expressions using R. We use the operator ∩safe to compose
refresh ranges. When the ranges overlap the result is the overlapping range.
Otherwise, the result is the range with the lowest numbers. The rationale is that

88 S. Crooijmans et al.

Table 2. Default refresh rates of basic tasks.

Task Default interval

Reading an SDS 〈0, 2000〉
Slow sensor, like temperature 〈0, 2000〉
Gesture sensor 〈0, 1000〉
Fast sensor, like sound or light 〈0, 100〉
Reading GPIO pins 〈0, 100〉

subtasks should not be delayed longer than their refresh range. Evaluating a task
earlier should not change its result but can consume more energy.

∩safe::〈Int , Int〉 〈Int , Int〉 � 〈Int , Int〉
R1 ∩safe R2 = R1 ∩ R2 if R1 ∩ R2 �= ∅ (1)

〈l1, h1〉 ∩safe 〈l2, h2〉 = 〈l2, h2〉 if h2 < l1 (2)
R1 ∩safe R2 = R1 otherwise (3)

R :: (MTask v a) � 〈Int , Int〉
R(t1 .||. t2) = R(t1) ∩safe R(t2) (4)

R(t1 .&&. t2) = R(t1) ∩safe R(t2) (5)
R(t1 >> |. t2) = R(t1) (6)
R(t >>= . f) = R(t) (7)

R(t >>∗. [a1 . . . an]) = R(t) (8)
R(rpeat t) = 〈0, 0〉 (9)

R(rpeatEvery d t) = 〈0, 0〉 (10)
R(delay d) = 〈d, d〉 (11)

R(t) =
{ 〈∞,∞〉 if t is Stable

〈rl, ru〉 otherwise (12)

We will briefly discuss the various cases of deriving refresh rates together
with the task semantics of the different combinators.

Parallel Combinators. For the parallel composition of tasks we compute the
intersection of the refresh intervals of the components as outlined in the definition
of ∩safe. The operator .||. in Eq. 4 is the or -combinator; the first subtask that
produces a stable value determines the result of the composition. The operator
.&&. in Eq. 5 is the and -operator. The result is the tuple containing both results
when both subtasks have a stable value.

Reducing the Power Consumption of IoT with Task-Oriented Programming 89

Sequential Combinators. For the sequential composition of tasks we only
have to look at the refresh rate of the current task on the left. The sequential
composition operator >>|. in Eq. 6 is similar to the monadic sequence operator
>>|. The operator >>=. in Eq. 7 provides the stable task result to the function
on the right-hand side, similar to the monadic bind. The operator >>∼. steps on
an unstable value and is otherwise equal to >>=.. The step combinator >>*. in
Eq. 8 has a list of conditional actions that specify a new task.

Repeat Combinators. The repeat combinators repeats their argument indef-
initely. The combinator rpeatEvery guarantees the given delay between repeti-
tions. The refresh rate is equal to the refresh rate of the current argument task.
Only when rpeatEvery waits between the iterations of the argument the refresh
interval is equal to the remaining delay time.

Other Combinators. The refresh rate of the delay in Eq. 11 is equal to the
remaining delay. Refreshing stable tasks can be delayed indefinitely, their value
never changes. For other basic tasks, the values from Table 2 apply. The values
rl and ru in Eq. 12 are the lower and upper bound of the rate.

The refresh intervals associated with various steps of the thermostat program
from Listing 3 are given in Table 3. Those rewrite steps and intervals are circular,
after step 2 we continue with step 0 again. Only the actual reading of the sensor
with temperature dht offers the possibility for a non-zero delay.

Table 3. Rewrite steps of the thermostat from Listing 3 and associated intervals.

Step Expression Interval

0 rpeat (
temperature dht >>~. \temp.
writeD builtInLED (goal <. temp)

)

〈0, 0〉

1 temperature dht >>~. \temp.
writeD builtInLED (goal <. temp) >>|.
rpeat (

temperature dht >>~. \temp.
writeD builtInLED (goal <. temp)

)

〈0, 2000〉

2 writeD builtInLED false >>|.
rpeat (

temperature dht >>~. \temp.
writeD builtInLED (goal <. temp)

)

〈0, 0〉

90 S. Crooijmans et al.

4.4 User Defined Refresh Rates

In some applications, it is necessary to read sensors at a different rate than the
default rate given in Table 2. This is achieved by calling the access functions
with a custom refresh rate as an additional argument.

class dht v where
temperature‘ :: (TimingInterval v) (v DHT) � MTask v Real
temperature :: (v DHT) � MTask v Real
humidity‘ :: (TimingInterval v) (v DHT) � MTask v Real
humidity :: (v DHT) � MTask v Real

class dio p v | pin p where
readD‘ :: (TimingInterval v) (v p) � MTask v Bool | pin p
readD :: (v p) � MTask v Bool | pin p

Listing 4. Definition for DHT sensors and reading digital values from GPIO pins with
a custom timing interval.

A tailor-made algebraic data type determines the timing intervals.

:: TimingInterval v = Default
| BeforeMs (v Int) // yields 〈0, x〉
| BeforeS (v Int) // yields 〈0, x × 1000〉
| ExactMs (v Int) // yields 〈x, x〉
| ExactS (v Int) // yields 〈0, x × 1000〉
| RangeMs (v Int) (v Int) // yields 〈x, y〉
| RangeS (v Int) (v Int) // yields 〈x × 1000, y × 1000〉

Listing 5. The ADT for timing intervals in mTask.

As example, we define an mTask that updates the SDS tempSDS in iTask in
a tight loop. The temperature‘ reading requires that this happens at least once
per minute. Without other tasks on the IoT node, the temperature SDS will be
updated once per minute. Other tasks can cause a slightly more frequent update.

delayTime = BeforeS (lit 60) // 1 minute in seconds

devTask :: Main (MTask v Real) | mtask, dht, liftsds v
devTask = DHT (DHT_DHT pin DHT11) λdht =

liftsds λlocalSds = tempSDS
In {main = rpeat (temperature‘ delayTime dht >>∼. setSds localSds)}

Listing 6. Updating an SDS in iTask at most once per minute.

5 Running Tasks on Interrupts

Interrupts can be used in IoT programming to prevent polling of input pins.
Most microprocessors offer hardware support to execute a piece of code, called
an interrupt service routine (ISR) or handler, associated with a change of input
on an input pin. The interrupt handlers are regular functions that typically come
with some restrictions, they must be short and should not do any communication.

Invoking an ISR often works even when the microprocessor is in sleep mode.
Upon the specified change of input level, the system becomes active and executes

Reducing the Power Consumption of IoT with Task-Oriented Programming 91

the ISR. This interrupt mechanism is obviously very suited to reduce the energy
consumption of IoT nodes. We can replace polling of an input by installing the
appropriate ISR and we do not have to spend any energy to monitor this input.
Moreover, it eliminates the possibility that the program misses an event when it
occurs in between measurements of the polling cycle. Unfortunately, it is not on
all kind of microprocessors possible to determine the reason the system wakes up
from deep sleep. Since we cannot uniquely identify interrupts on such a system,
the mTask system is limited to light sleep when it has to monitor interrupts.

The refresh rate mechanism offers a suitable way to integrate interrupts in
mTask. MTask is extended with a basic task called interrupt. It is parameterized
by the interrupt mode and the GPIO pin to watch.

class interrupts v where
interrupt :: InterruptMode (v p) � MTask v Bool | pin p

:: InterruptMode= Change | Rising | Falling | Low | High

Listing 7. Definition of the interrupt class in mTask.

When the mTask node executes this task, it installs a ISR and sets the refresh
rate of the task to infinity, 〈∞,∞〉. The interrupt handler changes the refresh
rate to 〈0, 0〉 when the interrupt occurs. As a consequence, the task is executed
on the next execution cycle.

The pirSwitch task in Listing 8 reacts to motion detection by a Passive
InfraRed (PIR) sensor by lighting the onboard LED for the given interval. The
system lightens the LED again when there is still motion detected after this
interval.

pirSwitch :: (v Int) � Main (MTask v Bool) | mtask v
pirSwitch interval = {main = rpeat (

interrupt High pirPin >>|.
writeD BuiltinLEDPin false >>|.
delay interval >>|.
writeD BuiltinLEDPin true

)}

Listing 8. Example of a toggle switch with interrupts

By changing the interrupt mode in this program text from High to Rising the
system lights the LED only one interval when it detects motion no matter how
long this signal is present at the pirPin. This example shows that this abstraction
of interrupts is very easy to use and blends well in the TOP design.

6 Implementing Refresh Rates

The refresh rates from the previous section tell us how much the next evaluation
of the task can be delayed. An IoT node executes multiple tasks interleaved. In
addition, it has to communicate with a server to collect new tasks and updates
of SDS. Hence, we cannot use those refresh intervals directly to let the micro-
processor sleep. Our scheduler has the following objectives.

92 S. Crooijmans et al.

– Meet the deadline whenever possible, i.e. the system tries to execute every
task before the end of its refresh interval. Only too much work on the device
might cause an overflow of the deadline.

– Achieve long sleep times. Waking up from sleep consumes some energy and
takes some time. Hence, we prefer a single long sleep over splitting this interval
into several smaller pieces.

– The scheduler tries to avoid unnecessary evaluations of tasks as much as
possible. A task should not be evaluated now when its execution can also be
delayed until the next time that the device is active. That is, a task should
preferably not be executed before the start of its refresh interval. Whenever
possible, task execution should even be delayed when we are inside the refresh
interval as long as we can execute the task before the end of the interval.

– The optimal power state should be selected. Although a system uses less
power in a deep sleep mode, it also takes more time and energy to wake up
from deep sleep. When the system knows that it can sleep only a short time
it is better to go to light sleep mode since waking up from light sleep is faster
and consumes less energy.

The algorithm R from Sect. 4 computes the evaluation rate of the current
tasks. For the scheduler, we transform this interval to an absolute evaluation
interval; the lower and upper bound of the start time of that task measured in
the time of the IoT node. We obtain those bounds by adding the current system
time to the bounds of the computed refresh interval by algorithm R.

For the implementation, it is important to note that the evaluation of a task
takes time. Some tasks are extremely fast, but other tasks require long compu-
tations and time-consuming communication with peripherals as well as with the
server. These execution times can yield a considerable and noticeable time drift
in mTask programs. For instance, a task like rpeatEvery (ExactMs 1) t should
repeat t every millisecond. The programmer might expect that t will be executed
for the (N + 1)th time after N milliseconds. Uncompensated time drift might
make this considerably later. MTask does not pretend to be a hard real-time
operating system, and cannot give firm guarantees with respect to evaluation
time. Nevertheless, we try to make time handling as reliable as possible. This is
achieved by adding the start time of this round of task evaluations rather than
the current time to compute absolute execution intervals.

7 Scheduling Tasks

Apart from the task to execute, the IoT device has to maintain the connection
with the server and check there for new tasks and updates of SDS. When the
microprocessor is active, it checks the connection and updates from the server
and executes the task if it is in its execution window. Next, the microprocessor
goes to light sleep for the minimum of a predefined interval and the task delay.

In general, the microprocessor node executes multiple mTask tasks. Our
mTask nodes repeatedly check for inputs from servers and execute all tasks
that cannot be delayed to the next evaluation round one step. We store tasks

Reducing the Power Consumption of IoT with Task-Oriented Programming 93

in a priority queue to check efficiently which of them need to be stepped. The
mTask tasks are ordered at their absolute latest start time in this queue; the
earliest deadline first. We use the earliest deadline to order tasks with equal
latest deadline.

It is very complicated to make an optimal scheduling algorithm for tasks to
minimize the energy consumption. We use a simple heuristic to evaluate tasks
and determine sleep time rather than wasting energy on a fancy evaluation
algorithm. Listing 9 gives this algorithm in pseudo code. First the mTask node
checks for new tasks and updates of SDS. This communication adds any task to
the queue. The stepped set contains all tasks evaluated in this evaluation round.
Next, we evaluate tasks from the queue until we encounter a task that has an
evaluation interval that is not started. This might evaluate tasks earlier than
required, but maximizes the opportunities to sleep after this evaluation round.
Executed tasks are temporarily stored in the stepped set instead of inserted
directly into the queue to ensure that they are evaluated at most once in a
evaluation round to ensure that there is frequent communication with the server.
A task that produces a stable value is completed and is not queued again.
repeat {

queue += communicateWithServer;
stepped = empty // tasks stepped in this round
while (notEmpty queue && earliestDeadline (top queue) ≤ currentTime) {

(task, queue) = pop queue;
task2 = step task; // includes computation of new execution interval
if (not (isStable task2)) // not finished after step

stepped += task2;
}
queue = merge queue stepped;
sleep (queue);

}

Listing 9. Pseudo code for the evaluation round of tasks in the queue.

The sleep function determines the maximum sleep time based on the top
of the queue. The computed sleep time and the characteristics of the micropro-
cessor determine the length and depth of the sleep. For very short sleep times
it might not be worthwhile to sleep. In the current mTask RTS, the thresholds
are determined by experimentation but can be tuned by the programmer. On
systems that lose the content of their RAM it is not possible to go to deep sleep
mode.

8 Resulting Power Reductions

For the measurements we used the Adafruit Feather M0 WiFi since it is able to
preserve its RAM memory and hence the mTask code and the task queue during
deep sleep. The results are representative for any micro controller with similar
sleeping characteristics. For the power measurements we used an INA219 current
sensor8 configured to measure currents from 0 to 400 mA with a resolution of
8 See https://www.adafruit.com/product/904 for the sensor and https://github.com/

adafruit/Adafruit INA219 for the associated library.

https://www.adafruit.com/product/904
https://github.com/adafruit/Adafruit_INA219
https://github.com/adafruit/Adafruit_INA219

94 S. Crooijmans et al.

0.1 mA. An Arduino Uno controls this sensor and measures the current every
two milliseconds. We measure the currents in the power lines of the USB cable
powering the microprocessor.

The mTask system uses the automatic Arduino power-saving mode for the
Wi-Fi module in the old situation, but no other power savings. We compare this
with the mTask system extended as described in this paper.

Blink Example. The simplest mTask program is the blink function from Listing 1.
The microprocessor is always active in the old implementation and hence uses
constantly about 15 mA. The LED adds about 1 mA when it is on. The figure
on the bottom shows the new implementation, it shows that the system is in
light sleep for most of the time. Periodically, the Wi-Fi stack needs to maintain
the connection, resulting in current spikes in the graph (Fig. 2).

Fig. 2. Current draw of the blink task with the old implementation on top.

Thermometer Example. The thermometer task just reads the temperature from
a Wemos SHT30 sensor9.

thermometer :: Main (MTask v Bool) | mtask v
thermometer= DHT I2Caddr λsensor.

{main = temperature‘ (BeforeSec (lit 60)) sensor}

Listing 10. A basic thermometer task.

The measurement will be repeated since this produces an unstable value.
Figure 3 depicts the current consumption of this example. The longer upper
9 See https://www.wemos.cc/en/latest/d1 mini shield/sht30.html.

https://www.wemos.cc/en/latest/d1_mini_shield/sht30.html

Reducing the Power Consumption of IoT with Task-Oriented Programming 95

bound of the refresh interval enables deep sleep between individual measure-
ments. As a consequence, the Wi-Fi connection needs to be re-established after
waking up, resulting in a longer current spike.

Fig. 3. Current draw of the temperature task with the old implementation on top.

PIR Switch Example. Next, we consider the PIR switch example from Listing 8.
Since the old version of mTask does not support interrupts, we cannot exe-
cute the program directly. To mimic the effect as well as possible, we replaced
interrupt High pirPin by a polling solution that waits until the pin reading is
high; readD pirPin >>*. [IfValue id rtrn]. The measurement results are sim-
ilar to the previous example, constant activity in the old implementation and
sleep with small bursts in the new implementation. The actual interrupts deter-
mine the number of bursts seen so it does not make sense to plot the current.

Plant Monitor. This task observes a plant’s environment and monitors two val-
ues, the amount of water in the soil and the light intensity. It becomes stable
when one of the monitored values exceeds a threshold. The value of the soil
sensor should be read at least every 5 min, 300 s, and the light intensity at least
every 90 s.
monitorPlant :: Main (MTask v Bool) | mtask, dht, LightSensor v
monitorPlant = {main = lightSensor .||. moistureSensor}
where

moistureSensor= readA‘ (BeforeSec (lit 300)) MoistureSensorPin
>>*. [IfValue ((<=.) moistureThreshold) (λ_. rtrn true)]

lightSensor = light‘ (BeforeSec (lit 90)) lightsensor
>>*. [IfValue ((<=.) lightThreshold) (λ_. rtrn true)]

Listing 11. The plant monitor task.

96 S. Crooijmans et al.

The combined refresh rate of the combinator .||. is determined by the shortest
interval: 〈0, 90×1000〉. We execute this task and the thermometer from Listing 10
on the same node. The thermometer task has a refresh interval of 〈0, 60×1000〉.
Hence, we should see the execution of both tasks every 60 s. This is exactly what
is shown in Fig. 4.

Fig. 4. Current draw of the thermometer task and the plant monitor.

8.1 Power Saving

By integrating with the composite trapezoidal rule, we calculate the total power
consumption from the shown current measurements. The number of interrupts
determines the saving for the PIR sensor example. Hence, we have not included
these numbers in the table. Table 4 shows that our implementation works as
expected. It reduces the energy consumption in all our examples considerably.

9 Related Work

Reducing the energy consumption of IoT nodes is currently getting attention
from several directions. More modern microprocessors are typically bigger in
terms of memory and computation power, while they consume less energy. Our
work is complementary to this approach.

Reducing the Power Consumption of IoT with Task-Oriented Programming 97

Table 4. Energy consumption and saving of the example programs.

Task Average energy consumption Difference

Old New

Blink 111.3 mW 52.1 mW −53%

Thermometer 204.2 mW 28.8 mW −86%

Combined 190.2 mW 22.5 mW −88%

Task-Oriented Programming. Most implementation work for TOP is part of
the iTask system [14,15]. The iTask framework generates web servers running on
a normal computer. The efficiency of the generated programs focusses on short
response times and preventing unnecessary computations. It also implements a
sophisticated publish-subscribe system to handle updates caused by SDS. It is
worthwhile to investigate if such a system can be implemented within the context
of a microprocessor based system.

Functional Reactive Programming. Implementations of functional reactive
programming (FRP) for microprocessors have similar goals as the mTask imple-
mentation of TOP [7]. The TOP system approaches the program from the tasks
to be done and the change of those tasks. The FRP approach approaches the
program from the streams of data from sensors and other inputs. This results in
quite different programming styles [16].

Hae is a DSL for FRP deeply embedded in Haskell that generates C++ code.
This code will be loaded in the flash memory of the microprocessors [19]. Hence,
it cannot be updated as often and easy as the task in our mTask system.

Belwal et al. present an energy reduction technique for FRP based on
Dynamic Voltage and Frequency Scaling (DVFS) [2]. Instead of bringing the
system to sleep, they reduce the energy consumption by slowing the processor
down.

Embedded DSLs for Programming Microprocessors. There are some
other DSLs for programming microprocessors embedded in Functional Program-
ming Languages. Haskino comes in various variants [9]. It enables to dynamically
execute abstractions of Arduino statements on a small microprocessor. Haski
focuses on the secure communication with IoT nodes [18].

Embedded Operating Systems. There are several embedded operating sys-
tems geared towards microprocessors, like FreeRTOS [1], Mantis OS [3] and Nano
RK [8]. Those systems offer pre-emptive multitasking on microprocessors as well
as several ways to reduce energy consumption. In contrast to the mTask system,
those systems store the programs in flash memory and are hence less dynami-
cally. Moreover, they are based on C-programs and cannot offer the reflection

98 S. Crooijmans et al.

on the current state of tasks. Sleep modes must typically be invoked explicitly
in the user program, or are at best invoked when all threads in the program
explicitly invoke a sufficient long delay.

10 Conclusion

In this paper, we show how we can automatically associate execution intervals
to tasks. Based on these intervals, we can delay the executions of those tasks.
When all task executions can be delayed, the microprocessor executing those
tasks can go to sleep mode to reduce its energy consumption. This is a rather
difficult problem that must be solved dynamically, since we make no assumptions
on the number and nature of the tasks that will be allocated to an IoT node.
Furthermore, the execution intervals offer an elegant and efficient way to add
interrupts to the language. Those interrupts offer a more elegant and energy
efficient implementation of watching an input than polling this input.

The actual reduction of the energy is of course highly dependent on the
number and nature of the task shipped to the IoT node. Our examples show a
reduction in energy consumption of two orders of magnitude. Those reductions
are a necessity for IoT nodes with battery power. Given the exploding number
of IoT nodes, such savings are also mandatory for other nodes to limit the total
power consumption of the IoT.

Acknowledgements. This research is partly funded by the Royal Netherlands Navy.
Furthermore, we would like to thank the anonymous reviewers for their invaluable
comments.

References

1. Barry, R.: Using the FreeRTOS Real Time Kernel - A Practical Guide (2009)
2. Belwal, C., Cheng, A.M.K., Ras, J., Wen, Y.: Variable voltage scheduling with the

priority-based functional reactive programming language. In: Proceedings of the
2013 Research in Adaptive and Convergent Systems, pp. 440–445 (2013). https://
doi.org/10.1145/2513228.2513271

3. Bhatti, S., et al.: Mantis OS: an embedded multithreaded operating system for
wireless micro sensor platforms. Mob. Netw. Appl. 10(4), 563–579 (2005). https://
doi.org/10.1007/s11036-005-1567-8

4. Brus, T.H., van Eekelen, M.C.J.D., van Leer, M.O., Plasmeijer, M.J.: Clean—a
language for functional graph rewriting. In: Kahn, G. (ed.) FPCA 1987. LNCS,
vol. 274, pp. 364–384. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
18317-5 20

5. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009). https://doi.org/10.1017/S0956796809007205

6. Clean team: Clean 3.0 language report (2020). https://cloogle.org/doc. Accessed
05 Apr 2022

https://doi.org/10.1145/2513228.2513271
https://doi.org/10.1145/2513228.2513271
https://doi.org/10.1007/s11036-005-1567-8
https://doi.org/10.1007/s11036-005-1567-8
https://doi.org/10.1007/3-540-18317-5_20
https://doi.org/10.1007/3-540-18317-5_20
https://doi.org/10.1017/S0956796809007205
https://cloogle.org/doc

Reducing the Power Consumption of IoT with Task-Oriented Programming 99

7. Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of the Second
ACM SIGPLAN International Conference on Functional Programming, pp. 263–
273 (1997). https://doi.org/10.1145/258948.258973

8. Eswaran, A., Rowe, A., Rajkumar, R.: Nano-RK: an energy-aware resource-centric
RTOS for sensor networks. In: 26th IEEE International Real-Time Systems Sym-
posium, pp. 256–265 (2005). https://doi.org/10.1109/RTSS.2005.30

9. Grebe, M., Gill, A.: Threading the Arduino with Haskell. In: Van Horn, D., Hughes,
J. (eds.) TFP 2016. LNCS, vol. 10447, pp. 135–154. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-14805-8 8

10. Koopman, P., Lubbers, M., Plasmeijer, R.: A task-based DSL for microcomputers.
In: Proceedings of the Real World Domain Specific Languages Workshop 2018 on
- RWDSL 2018, Vienna, Austria, pp. 1–11. ACM Press (2018). https://doi.org/10.
1145/3183895.3183902

11. Lubbers, M., Koopman, P., Plasmeijer, R.: Writing Internet of Things applications
with task oriented programming. arXiv preprint arXiv:2212.04193 (2022)

12. Lubbers, M., Koopman, P., Ramsingh, A., Singer, J., Trinder, P.: Tiered versus
tierless IoT stacks: comparing smart campus software architectures. In: Proceed-
ings of the 10th International Conference on the Internet of Things, IoT 2020.
ACM, New York (2020). https://doi.org/10.1145/3410992.3411002

13. Nižetić, S., Šolić, P., López-de-Ipiña González-de-Artaza, D., Patrono, L.: Internet
of things (IoT): opportunities, issues and challenges towards a smart and sustain-
able future. J. Clean. Prod. 274, 122877 (2020). https://doi.org/10.1016/j.jclepro.
2020.122877

14. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: executable specifications of inter-
active work flow systems for the web. In: Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2007), Freiburg, Ger-
many, pp. 141–152. ACM (2007)

15. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-oriented
programming in a pure functional language. In: Proceedings of the 14th Symposium
on Principles and Practice of Declarative Programming, PPDP 2012, pp. 195–206.
ACM, New York (2012). https://doi.org/10.1145/2370776.2370801

16. Stutterheim, J., Achten, P., Plasmeijer, R.: Maintaining separation of concerns
through task oriented software development. In: Wang, M., Owens, S. (eds.) TFP
2017. LNCS, vol. 10788, pp. 19–38. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89719-6 2

17. Tratt, L.: Domain specific language implementation via compile-time meta-
programming. ACM Trans. Program. Lang. Syst. 30(6) (2008). https://doi.org/
10.1145/1391956.1391958

18. Valliappan, N., Krook, R., Russo, A., Claessen, K.: Towards secure IoT program-
ming in Haskell. In: Proceedings of the 13th ACM SIGPLAN International Sympo-
sium on Haskell, Haskell 2020, pp. 136–150. Association for Computing Machinery,
New York (2020). https://doi.org/10.1145/3406088.3409027

19. Wang, S., Watanabe, T.: Functional reactive EDSL with asynchronous execution
for resource-constrained embedded systems. In: Lee, R. (ed.) SNPD 2019. SCI,
vol. 850, pp. 171–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
26428-4 12

https://doi.org/10.1145/258948.258973
https://doi.org/10.1109/RTSS.2005.30
https://doi.org/10.1007/978-3-030-14805-8_8
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.1145/3183895.3183902
http://arxiv.org/abs/2212.04193
https://doi.org/10.1145/3410992.3411002
https://doi.org/10.1016/j.jclepro.2020.122877
https://doi.org/10.1016/j.jclepro.2020.122877
https://doi.org/10.1145/2370776.2370801
https://doi.org/10.1007/978-3-319-89719-6_2
https://doi.org/10.1007/978-3-319-89719-6_2
https://doi.org/10.1145/1391956.1391958
https://doi.org/10.1145/1391956.1391958
https://doi.org/10.1145/3406088.3409027
https://doi.org/10.1007/978-3-030-26428-4_12
https://doi.org/10.1007/978-3-030-26428-4_12

	Reducing the Power Consumption of IoT with Task-Oriented Programming
	1 Introduction
	1.1 Research Contribution

	2 Task-Oriented Programming
	2.1 mTask

	3 Energy Efficient IoT Nodes
	4 Scheduling Tasks Efficiently
	4.1 Evaluation Interval
	4.2 Basic Refresh Rates
	4.3 Deriving Refresh Rates
	4.4 User Defined Refresh Rates

	5 Running Tasks on Interrupts
	6 Implementing Refresh Rates
	7 Scheduling Tasks
	8 Resulting Power Reductions
	8.1 Power Saving

	9 Related Work
	10 Conclusion
	References

