
Communication for Task-Oriented Systems with
Edge Devices

Niek Janssen[0009−0003−7348−7788], Mart Lubbers[0000−0002−4015−4878], and
Pieter Koopman[0000−0002−3688−0957]

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

niek.janssen3@ru.nl mart@cs.ru.nl pieter@cs.ru.nl

Abstract. Implementing communication between edge devices and their
server in IoT systems is often a tedious and bug-prone task, since dif-
ferent programming languages with distinct underlying paradigms need
to cooperate. The mTask system prevents this semantic friction by pro-
viding a single task-oriented framework for the whole system. Shared
data sources provide flexible communication between tasks running on
the server and tasks running on edge devices, however the current im-
plementation has some drawbacks. We introduce an improved version
of these shares with a clearer semantics. To improve the communication
between edge devices and the server, we introduce the possibility to start
parametrized server tasks from the edge device.

1 Introduction

Implementing communication between an edge device in an IoT system and the
server is typically a tedious and bug-prone task. The server software is written in
high-level languages or frameworks providing automated memory management,
and other high-level features. Edge devices are still mostly programmed in low-
level languages like C, due to their tight resource constraints. As these languages
are vastly different and lack tooling that covers the entire system, it is difficult
to get the server and edge device to cooperate smoothly. The problems caused
by the discrepancy between levels of abstraction in the programming languages
are called semantic friction [6].

For the communication code, the semantic friction is even more apparent than
in the rest of the code base. Firstly, all communication code has to be written
twice: once for the server-side and once for the client-side. These two implemen-
tations have to semantically complement each other exactly to provide correct
communication. Furthermore, all this duplicated code has to be maintained,
every change can break this exact match between the two implementations.

To prevent those problems, we use a tierless approach to program IoT sys-
tems; the server and edge code is generated from a single high level source [11].
The mTask system brings task-oriented programming (TOP) to edge devices [8].
It integrates directly with iTask, a TOP system for web servers [18]. Both are
implemented as shallowly embedded DSL’s in the host language Clean [15, 17].

2 Niek Janssen, Mart Lubbers, and Pieter Koopman

With iTask and mTask, a programmer writes a single program of which a part
is executed on the server, and other parts are executed on the edge devices. The
existing mTask system clones an iTask share to an edge device. These copies
of the share are automatically synchronized when one of them is changed. This
is convenient, but race conditions can cause incorrect updates. Moreover, the
automatic synchronization can invoke superfluous communication. This paper
introduces an improved design where shares are hosted either on the server, or
on an edge device. The new system has simple and safe ways to update remote
shares by executing a remote task. The ability to execute a task from the server
on the edge device was part of the core of mTask. The possibility to start a task
on the server from an edge device is new.

In section 2, we discuss the current state of task-oriented programming and
shared data sources, focussing on communication. In section 3, we improve on
the implementation of shared data sources, using friction points identified in sec-
tion 2. We discuss cross-platform access of shares, moving shares from task-level
to device-level so that they are accessible from multiple tasks, and synchroniza-
tion between edge device and server.

We then informally discuss some properties of the semantics of shared data
sources in section 4. We start with the existing properties of iTasks shared data
source semantics, and see that these semantics hold for cross-platform access.
We also see that one-way synchronization is semantically safe, whereas two-way
synchronization is not.

In section 5, we look at how we implement the features used in section sec-
tion 3. We conclude that with only one added combinator, it is possible to
implement all features discussed in this paper. Finally, in section 6 we discuss a
bigger example and see how our new shared data sources perform in practice, in
terms of possibilities and ease of use.

1.1 Research Contributions

– We introduce a new design for shared data sources on edge devices (section 3)
that prevents race conditions.

– The functionality of the new shares is a strict subset of shared data sources
available on servers (section 2.3). We sketch the semantic equality of these
types of shares in (section 4).

– We introduce a way to invoke parametrized server tasks from the edge devices
(sections 5.1 and 5.2). We use this general mechanism to update shares on
the server from the edge devices.

2 Task-Oriented Programming for the IoT

In this section, we discuss the current state of task-oriented programming for
the IoT. We briefly explore TOP in iTask and mTask. We then implement a
simple thermostat program as a vessel to discuss problems and limitations in
the current version of mTask. We first focus on task parameters/results and
later shared data sources to implement communication.

Communication for Task-Oriented Systems with Edge Devices 3

2.1 Tasks, iTask and mTask

At the core of TOP are tasks. Tasks are an abstract representation of work. This
can be a wide variety of things. For example, in iTask, a task might be: fill in
this form using the web interface. An example of an mTask task is: read the
temperature using a certain sensor. Tasks are constructed from task primitives
or by combining smaller tasks. For many tasks requiring user interaction, a user
interface can be generated.

In its simplest form, tasks are combined either sequential or parallel. Se-
quential combinators are also called step combinators. An example use of a step
combinator is: let a user fill in this form, then display the filled in form values on
the screen for confirmation. An example use of a parallel combinator is: let the
user fill in this form, and at the same time show a countdown of a time limit.

In this paper, we use two different implementations of task-oriented program-
ming: iTask and mTask. Both are implemented as a shallow embedded DSL [15]
in the host language Clean [17]. For programmers familiar to Haskell, a document
comparing the two is available [10]. Whereas iTask is used to create multi-user
distributed web applications [18, 19], mTask is used to create applications for
edge devices [8]. Due to the tighter resources on edge devices, the language of
mTask is more restricted. As iTask sends mTask programs to embedded devices,
and both languages are written as embedded DSL’s in Clean, a full system con-
taining iTask and mTask code can be written in a single source file.

As applications written with iTask and mTask are single-threaded applica-
tions, parallel tasks cannot run truly in parallel. Instead, the semantics of iTask
and the parallel combinators run the two tasks interleaved, using small step
rewrites.

The implementations of mTask and iTask are fully separated. As they each
have their own combinator implementation, we cannot use the same combinator
symbols to implement for example the sequential and parallel combinators. To
distinguish them and avoid naming conflicts, mTask combinators usually contain
a period character (.), whereas iTask combinators do not.

2.2 A Simple Thermostat

Using iTask and mTask, we create an example implementation of a simple ther-
mostat. We assume an mTask device exists, which is equipped with a tempera-
ture sensor and a heater. In all our examples, a TCPSettings object is provided,
containing all necessary information to create a connection with the embedded
device. This device is controlled from a web server, which sets the target tem-
perature. This example is used to introduce iTask and mTask gradually, so no
shared data sources are used yet. Both the iTask and mTask code are imple-
mented in the same source code file; iTask sends the mTask bytecode to the
device over the network.

1 thermostat1 :: TCPSettings � Task Bool
2 thermostat1 deviceInfo =
3 updateInformation [] 20.0 >>? λtargetTemp �

4 Niek Janssen, Mart Lubbers, and Pieter Koopman

4 withDevice deviceInfo λdevice �
5 liftmTask (onDevice targetTemp) device
6 where
7 onDevice :: Real � Main (MTask v Bool) | mtask,dht v
8 onDevice targetTemp =
9 dhThermometer λthermometer �

10 declarePin D4 PMOutput λheater �
11 { main = rpeatEvery (BeforeSec $ lit 30) (
12 temperature thermometer >>∼. λcurrentTemp �
13 writeD heater (currentTemp <. lit targetTemp)
14)}

Listing 1. In the design of thermostat v1, the target temperature is set once via iTask,
and then maintained using the thermometer and heater on the mTask device.

In Listing 1, we create a function thermostat1, hosting the iTask code. The
function updateInformation on line 3 generates a user interface on the server,
where the user can edit the target temperature that the thermostat should strive
towards. We also create an onDevice function, hosting the mTask code. This
code takes the temperature set within iTask, and uses a temperature sensor
and heater to keep the temperature stable around the target temperature. The
difference between iTask and mTask is visible in their types: whereas iTask tasks
have type Task a (as visible in the type of thermostat1), mTask tasks have type
Main (MTask v a) (as visible in the type of onDevice).

In Listing 1, some basic tasks are clearly visible. For example, on line 3
the updateInformation in iTask, displays a web form to the user. In mTask, the
temperature task on line 12 uses the thermometer to read the current temperature.

On line 3, we also see a sequential combinator. As soon as the user clicks the
submit button on the form, the sequential combinator executes the rest of the
program. Listing 1 does not have parallel combinators, but we see some later in
the paper.

The function withDevice on line 4 sets up a connection between the server
running iTask and an edge device running the mTask runtime system. The
liftmTask function on line 5 compiles an mTask program and starts it on a
connected edge device. This way, iTask controls the placement of any mTask
device [11].

An Interactive Thermostat The example in Listing 1 is nice, but we can only
set the temperature once. The thermostat then executes the loop to maintain
this temperature indefinitely. If we want a thermostat where the user can change
the target temperature at any time, and also see the current temperature, we
end up with a relatively convoluted and cumbersome implementation. The idea
is that we keep restarting the task running on the edge device using a new
target temperature, and use the task value to communicate back the current
temperature. The iTask main body necessary to accomplish this is shown in
Listing 2

1 /∗ Part of thermostat v2 ∗/
2 mainLoop :: MTDevice (Real, Real) � Task ()

Communication for Task-Oriented Systems with Edge Devices 5

3 mainLoop device (targetTemp, currentTemp) =
4 (liftmTask (onDevice targetTemp) device >>- λcurrentTemp �
5 waitForTimer False 30 >-| return (targetTemp, currentTemp))
6 -| |-
7 ((updateInformation [] targetTemp -| | viewInformation [] currentTemp)
8 >>- λtargetTemp � return (targetTemp, currentTemp))
9 >>- λtemperatures � mainLoop device temperatures

Listing 2. Where thermostat v1 only allows the user to set the target temperature
once, v2 continuously show the interface to set the target temperature and view the
current temperature. Every 30 seconds everything refreshes.

Communication and Limitations To understand why this implementation
is so cumbersome, we first look at the communication present in the previous
example thermostat 1 in Listing 1. In this example, we only communicate the
target temperature to the device, by embedding it into the mTask program. We
see on line 13 that lit targetTemp is used to lift the target temperature into
the mTask domain. The mTask language is implemented as a shallow embedded
DSL. When this DSL is executed at runtime, the mTask code is compiled into
bytecode and sent to the mTask device. The target temperature is embedded
into this bytecode as a constant. Once the task ends, the result of the mTask
task becomes the result of the liftmTask combinator on line 5 in Listing 1. This
mechanism could be leveraged to communicate a value back to the server.

One major limitation of this approach is the lack of modularity. As we can see
in the main loop in Listing 2, program logic is interleaved with communication
logic and the creation of user interfaces. Another limitation of this approach is
the continuous recompilation and re-uploading of the mTask task.

First of all, this is a burden for the programmer. In this case, we needed a rel-
atively complex loop structure with several parallel tasks to perform a relatively
simple task. This code needs to be written and maintained by the programmers.

Secondly, it is a waste of resources. Every 30 seconds, the entire mTask pro-
gram is recompiled and sent over the network. Especially on mTask devices that
run on batteries, this accelerates battery depletion. Moreover, some devices are
connected by relatively low-bandwidth connections, which has to be shared with
other devices. Currently, we are only looking at a basic thermostat implemen-
tation which restarts every 30 seconds, but it is easy to imagine systems with
more volatile variables, generating many more recompilation cycles.

2.3 Shared Data Sources

When communicating using task parameters and results, parallel running tasks
only communicate by being restarted. Shared data sources allow for communica-
tion between parallel running tasks without the requirement of being restarted.
In iTask, shared data sources are only a programmer interface containing a read
and a write function. Since their first implementation, they have been extended
with some extra functionality, like parametric lenses and a notification system
[4]. Shared data sources in mTask are a strict subset of shared data sources in

6 Niek Janssen, Mart Lubbers, and Pieter Koopman

iTask. Everything that is not supported by mTask, is outside the scope of this
paper.

In mTask, only simple shared data sources are supported that act as type-
safe data storages. Neither parametric lenses nor the notification system are
available. Furthermore, mTask shared data sources are limited to fixed-size data
structures.

In iTask, such a simple shared data source acting like a variable is created
using the function withShared. It takes an initial value for the shared data source,
and a callback function with the shared data source as an argument. This shared
data source can then be used in child-tasks.

1 shares :: Task Real
2 shares = withShared 20.0 λsds �
3 updateSharedInformation [] sds -| |
4 viewSharedInformation [] sds

Listing 3. This small iTask program uses
shared data sources.

Fig. 1. This interface is being gen-
erated by the program on the left.

For example, in Listing 3, we have a shared data source used by two parallel
tasks. The tasks generate an interface containing an input field and a numerical
written value, as can be seen in fig. 1. The form task updates the value of the
shared data source when the form value changes, and the display task updates
the displayed value when the value of the shared data source changes. Whenever
the form value is changed, the value below changes with it. This process continues
indefinitely, or until it is stopped by a parent task.

These shared data sources are used to improve the modularity and separation
of concerns in source code. Take for example our thermostat implementation in
Listing 2. There, we have a single main loop, handling the user interface and
mTask device in a big ball of spaghetti. Using a shared data source, we separate
these concerns in Listing 4.

1 thermostat3 :: TCPSettings � Task Real
2 thermostat3 deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �
5 updateSharedInformation [] iTargetTempShare -| |
6 viewSharedInformation [] iCurrentTempShare -| |
7 withDevice deviceInfo λdevice �
8 mainLoop device iTargetTempShare iCurrentTempShare
9 where

10 mainLoop device iTargetTempShare iCurrentTempShare =
11 (forever $ get iTargetTempShare >>- λtargetTemp �
12 liftmTask (onDevice targetTemp) device >>- λcurrentTemp �
13 set currentTemp iCurrentTempShare >-|
14 waitForTimer False 30)
15

16 onDevice :: Real � Main (MTask v Real) | mtask,dht v

Communication for Task-Oriented Systems with Edge Devices 7

17 // Identical to onDevice in Listing 2

Listing 4. Whereas thermostat v2 has to restart the interface every 30 seconds to
update it, v3 uses shared data sources to automate this task. The mTask device code
still has to be restarted every 30 seconds to synchronize the target and current tem-
peratures.

On lines 5 and 6, we see the forms being created and linked to their respective
shared data sources. All input/output of these form fields are handled directly
via shared data sources. The form is now created outside the thermostat loop.

On lines 3 and 4, we create the shares to be used in the temperature form
fields and the main loop. In the main loop itself, we only have to regularly run
the thermostat using the values present in the shared data sources. We see on
lines 11 and 13 that the values are retrieved from and updated to the shared
data sources.

3 Improving Shared Data Sources

Up to here, we have implemented our thermostat solely using techniques already
available in iTask and mTask. However, we still have a relatively monolithic
implementation, with a big main loop (the forever on line 11) starting both the
iTask and mTask parts of the code repeatedly. We would like our implementation
to be more modular, similar to how updateSharedInformation detaches the form
logic from the edge device logic. In this section, we introduce a new design for
shared data sources and use it to implement communication between the server
and the device.

3.1 Cross-platform shared data source Access

To accomplish this detachment of iTask and mTask logic, we introduce interfac-
ing to access shared data sources cross-platform. We provide the functions iGet

and iSet to access iTask shares from within mTask. To access mTask shares
from within iTask, we provide mGet and mSet. Overloading the existing get and
set methods is not possible, as mGet and mSet need the extra device argument.
This further allows us to separate the communication from the control structure.
Communication between the iTask server and the mTask device is no longer de-
pendent on starting or restarting the mTask program.

In the next version of our thermostat, we no longer restart the thermostat
task every 30 seconds. Instead, we provide the device with a task that uses the
shared data source to update the target temperature. This way, we overcome the
limitations posed in section 2.2. We use our newly introduced cross platform ac-
cess functions where necessary. As a small optimization, we compare the current
value to the previous one, and only update it once the value changes.

1 thermostat4 :: TCPSettings � Task Bool
2 thermostat4 deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �

8 Niek Janssen, Mart Lubbers, and Pieter Koopman

5 updateSharedInformation [] iTargetTempShare | |-
6 viewSharedInformation [] iCurrentTempShare | |-
7 withDevice deviceInfo λdevice �
8 liftmTask (onDevice iTargetTempShare iCurrentTempShare) device
9 where

10 onDevice :: (Shared sds Real) (Shared sds Real)
11 � Main (MTask v Bool)
12 | RWShared sds & mtask,dht,lowerSds v
13 onDevice iTargetTempShare iCurrentTempShare =
14 dhThermometer λthermometer �
15 declarePin D4 PMOutput λheater �
16 withmTaskShared 20.0 λoldCurrentShare �
17 { main = rpeatEvery (BeforeSec $ lit 30) (
18 temperature thermometer >>∼. λcurrentTemp �
19 getSds oldCurrentShare >>∼. λoldCurrent�
20 If (currentTemp ==. oldCurrent) (rtrn currentTemp)
21 (iSet iCurrentTempShare currentTemp >>|.
22 setSds oldCurrentShare currentTemp) >>|.
23 iGet iTargetTempShare >>∼. λtargetTemp �
24 writeD heater (currentTemp <. targetTemp)
25) }

Listing 5. Where thermostat v3 only used shared data sources on the server, v4 uses
shared data sources for all communication.

The function thermostat4 in Listing 5 is very similar to thermostat3 in List-
ing 4. The only difference is that on line 8 of Listing 5, the call to the main loop
is replaced by liftmTask.

Then, in the mTask code, withmTaskShared is used to create a new shared
data source on line 16. We start the device loop using rpeatEvery on line 17,
and in the loop on line 18 to line 24 we implement our thermostat logic. When
we get or set the current or target temperatures on lines 21 and 23, the data
is directly retrieved from or written to the corresponding shared data source on
the server.

Communication and Limitations In this example, all communication is fully
handled by reading to or writing from shared data sources. The shared data
sources can be directly used from the server. However, as we do not expect the
current temperature to change every 30 seconds, we have saved a lot of network
traffic (and battery life) by checking whether the value is actually new. We can
see on line 19 to line 22 that some scaffolding is necessary to implement this
behaviour.

To implement the same behaviour on the server side for the target tempera-
ture, we have to take a different approach. On the client side, we have our own
iGet every time the value changes. However, on the server side, the updating
of the shared data source is fully handled using updateSharedInformation. We
discuss this approach in more detail in section 3.3.

Finally, one of the goals we described at the end of section 2.2, was to have a
less monolithic implementation. However, if we try to split our code into separate
tasks for the thermometer and heater control, we encounter a problem. As we

Communication for Task-Oriented Systems with Edge Devices 9

create a shared data source from within a task, the scope of that shared data
source is limited to that task only. In another task, we can create a separate
shared data source, but all communication between them has to go via the
server, even though they exist on the same device. This approach causes a lot of
network traffic, which is also something we want to avoid.

3.2 Task-independent Shares

To get a grasp of why exactly it is not possible to fully separate communication
logic, we consider fig. 2. On the left hand side, we see the current situation,
where shared data sources are created by and belong to a certain mTask task.
This creates a scope, containing a task along with all the shares it needs. It
also illustrates the inability for any other task to access these shares. As stated
before, this situation is undesirable.

We now lift the creation of shared data sources out of the task creation, to
the iTask domain. Once such a shared data source is created, any task can access
these shares, as illustrated by the right hand side of fig. 2.

liftMTask liftMTask

withDevice

mTask
Device

iTask
Server

liftMTask liftMTask

withDevice

Shares
Tasks

Fig. 2. This diagram visualizes the communication between the server and a device.
The left hand side displays the old variant with a limited scope for shared data sources.
The right hand side displays the new design, which is demonstrated in Listing 6.

To come back to our thermostat example, this change now allows us to cre-
ate separate tasks for the heater and temperature controllers. This reduces the
monolithicness of our implementation, and improves maintainability and the
separation of concerns.

1 thermostat5 :: TCPSettings � Task Bool
2 thermostat5 deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �
5 updateSharedInformation [] iTargetTempShare | |-

10 Niek Janssen, Mart Lubbers, and Pieter Koopman

6 viewSharedInformation [] iCurrentTempShare | |-
7 withDevice deviceInfo λdevice �
8 withmTaskShared device 20.0 λmCurrentTempShare �
9 liftmTask (sensor mCurrentTempShare iCurrentTempShare) device | |-

10 liftmTask (heater mCurrentTempShare iTargetTempShare) device
11 where
12 sensor mCurrentTempShare iCurrentTempShare =
13 dhThermometer λthermometer � /∗ No share creation here ∗/
14 { main = rpeatEvery (BeforeSec $ lit 30) (
15 temperature thermometer >>=. λtemp �
16 getSds mCurrentTempShare >>∼. λoldCurrent �
17 If (currentTemp ==. oldCurrent) (rtrn temp)
18 (iSet iCurrentTempShare temp >>|.
19 setSds mCurrentTempShare temp)}
20

21 heater mCurrentTempShare iTargetTempShare =
22 declarePin A4 PMOutput λheater � /∗ No share creation here ∗/
23 { main = rpeatEvery (BeforeSec $ lit 30) (
24 getSds mCurrentTempShare >>∼. λcurrent �
25 iGet iTargetTempShare >>∼. λgoal �
26 writeD heater (current <. goal))}

Listing 6. Whereas thermostat v4 had to be implemented as a single mTask task, it
is now possible to separate tasks for the heater and temperature controllers due to the
possibility of accessing a shared data source from multiple tasks.

The thermostat version of Listing 6 contains a few updates from the previ-
ous version in Listing 5. Firstly, the onDevice task has been split into a sensor

task on line 12, which is responsible for reading the thermometer and updating
the current temperature, and a heater task on line 21, which is responsible for
controlling the heater from the target and current temperatures. Secondly, the
creation of the shared data source has been taken out of the individual mTask
tasks, and has moved to the iTask code on line 8.

Communication and Limitations The current version allows us to separate
the concerns of the heater control and the temperature sensor. However, as we
see on lines 18 and 19, we still need to update both the mTask and iTask version
of the share. On line 25, we see that every iteration of the temperature check
still requires a network call to the iTask shared data source, even though the
temperature probably only changes sporadically. The communication logic is still
interleaved with the two controllers.

3.3 Synchronizing Shares

We now would like to go one step further, and fully separate the thermostat logic
from the communication logic. We provide the synchronization tasks syncItoM

and syncMtoI. These functions take an iTask and an mTask shared data source,
and synchronize the value from one side to the other whenever the value changes.
Their implementation is further discussed in section 5.3. These are simply func-
tions we can insert alongside the temperature, heater and form tasks, in the same

Communication for Task-Oriented Systems with Edge Devices 11

manner as we use updateSharedInformation in section 2.3 to offload the handling
of the user interface. In mTask, we can now focus solely on implementing our
device code, knowing the communication is fully handled elsewhere.

In this final version of our thermostat in Listing 7, we outsource the synchro-
nization of shares between server side and client side to the new tasks syncItoM

and syncMtoI. We run the synchronization tasks parallel to the rest in lines 10
and 11. Note that on line 19, we do not update the iTask shared data source
anymore. Data synchronization does come with a few caveats. We discuss the
exact semantics and limitations of synchronization in section 4.3.

4 Semantics of Shared Data Sources

In this section, we discuss the informal semantics of shared data sources and
how they relate to cross platform access and synchronization, as described in
section 3. We define some properties on these semantics, and show that they
hold for cross-platform access, but not for all cases of synchronized shared data
sources. The full formal semantics are outside the scope of this paper.

1 thermostat6 :: TCPSettings � Task Bool
2 thermostat6 deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �
5 updateSharedInformation [] iTargetTempShare | |-
6 viewSharedInformation [] iCurrentTempShare | |-
7 withDevice deviceInfo λdevice �
8 withmTaskShared device 20.0 λmTargetTempShare �
9 withmTaskShared device 20.0 λmCurrentTempShare �

10 syncIToM device iTargetTempShare mTargetTempShare | |-
11 syncMtoI device mCurrentTempShare iCurrentTempShare | |-
12 liftmTask (sensor mCurrentTempShare) device | |-
13 liftmTask (heater mCurrentTempShare mTargetTempShare) device
14 where
15 sensor mCurrentTempShare =
16 dhThermometer λthermometer �
17 { main = rpeatEvery (BeforeSec $ lit 30) (
18 temperature thermometer >>=. λtemp �
19 setSds mCurrentTempShare temp)}
20

21 heater mCurrentTempShare mTargetTempShare =
22 declarePin A4 PMOutput λheater �
23 { main = rpeatEvery (BeforeSec $ lit 30) (
24 getSds mCurrentTempShare >>∼. λcurrent �
25 getSds mTargetTempShare >>∼. λgoal �
26 writeD heater (current <. goal))}

Listing 7. Whereas thermostat v5 had to do manual synchronization every time we
write to a shared data source, v6 have background tasks on lines 10 and 11 to automate
these tasks.

12 Niek Janssen, Mart Lubbers, and Pieter Koopman

4.1 Semantic properties on Shared Data Sources

We now look at the informal semantics of the operations get, watch, set and upd
1. In the thermostat examples of section 3, we only used get and set, together
with their mTask (getSds, setSds) and cross-platform (iGet, iSet, mGet, mSet)
variants. We introduce the full set of operations on shared data sources first.

– get takes the shared data source and returns its value.
– watch continuously reads the shared data source, and updates the task result

with the value. Opposed to all other operations on shared data sources, this
task does not terminate immediately, but only when it is discarded.

– set takes a value and a shared data source. It writes this value to the shared
data source once, and returns it as well.

– upd takes a transformation function of type a � a and a shared data source
of type a. It applies the transformation function to the value of the shared
data source. The resulting value is both written back to the shared data
source, and returned by the upd function.

The type signatures of operations on shared data sources in iTask, and the
mTask counterpart, are found in Listing 8. Note that get is a special case of
watch. In iTask, the choice has been made to specify both operations, where get

is an optimized version that cannot be used to perform a watch. In mTask, the
get is used for both.

1 // Given a shared data source of type (Shared a):
2 /∗ iTask signature ∗/ /∗ mTask variant ∗/
3 get :: (Shared a) � Task a // getSds
4 watch :: (Shared a) � Task a // getSds
5 set :: a (Shared a) � Task a // setSds
6 upd :: (a � a) (Shared a) � Task a // updSds

Listing 8. We define the type signatures of the operations on shared data sources.

We define five properties on the shared data sources as implemented in iTask:

– Atomicity : The operations are guaranteed to be atomic. While reading, writ-
ing, or updating, it is guaranteed that no other task can access the share.
This is especially important for the upd operation.

– Incompleteness: It is not guaranteed that all tasks observing the shared data
source see all changes. If two updates happen before a task gets a chance to
observe the share, the first update is missed.

– Ordering : It is guaranteed that all tasks observing the shared data source
see changes in the same order.

– Convergence: After a finite amount of time without any updates, all tasks
observing the shared data source see the same value.

1 The full iTask shared data source implementation supports several features that
mTask shared data sources do not. For the sake of simplicity, we only discuss features
of iTask shared data sources that mTask supports as well. More info about full iTask
shared data sources can be found in Böhm [2], Domoszlai et al. [4].

Communication for Task-Oriented Systems with Edge Devices 13

To give a bit more intuition for the properties Incompleteness, Ordering and
Convergence, let us look at the example of Listing 9. In this example, we run
tasks a and b in parallel. Each of them sets the value of the shared data source,
and then forever reads the shared data source to do something with it.

The Incompleteness non-guarantee tells us that it is undefined whether any of
these tasks sees both values. It is possible that either, or both, only see the value
that is written last. This simply has to do with the fact that there are defined
moments on which the task looks at the value of the share. If the value of the
shared data source changes twice between two observations, the task misses the
first value. When it is important that no updates are missed, the programmer
can employ a queue in the shared data source.

The Ordering property guarantees that the values that are seen by the tasks
are always seen in the same order. It is not possible that task a first sees value
12 and then 42, while task b first sees 42 and then 12, or vice versa.

The Convergence property guarantees that, eventually, both tasks will ob-
serve the last written task value.

1 both = withShared 0 λshare �
2 a share -&&- b share
3

4 a sds = set 12 sds >-| b sds = set 42 sds >-|
5 watch sds >>* /∗ . . . ∗/ watch sds >>* /∗ . . . ∗/
Listing 9. We define two iTask tasks to illustrate that both tasks see values in the
same order (Ordering), but not necessarily all values (Incompleteness).

The Atomicity property demonstrates the need for the upd operation nicely.
As an example, we consider a program where multiple parallel running tasks
increase a counter by one throughout the code. Were this +1 implemented by
a get share >>- λ v � set (v+1) share, we would have a race condition in our
code [13]. Implementing it with the atomic upd operator instead, we get upd ((+

) 1) share. This version performs the whole operation in a single step, avoiding
race conditions.

4.2 Semantics of Cross-Platform Access

In the previous section, we discussed the semantics of iTask’s and mTask’s shared
data sources. The properties of Atomicity, Ordering and Convergence are guar-
anteed on these systems, as the host/server is the sole controller. The iTask and
mTask runtime systems tightly control how operations on shared data sources
are performed, and ensure these properties.

However, as iTask is run on a server and mTask is run on an embedded
device, a system employing both is inherently a multiprocessor system. If we
want to implement this combination in some kind of distributed manner, we run
into all kinds of synchronization problems. The old implementation of shared

14 Niek Janssen, Mart Lubbers, and Pieter Koopman

data sources for mTask has exactly this problem. A more elegant approach is
to handle updates of the shared data source on the runtime system where the
shared data source exists. This is the approach we used in section 3.1. It has
also been used in distributed iTasks [14, Section 4.2]. However, as mTask shares
differ from iTask shares, we cannot simply overload the shared data source access
operations like they do.

Let us look at this approach more closely. As an example, we take the upd

operation. In fig. 3, on the left hand side, we see a visualization of the upd opera-
tion using a single runtime (either iTask or mTask) setting. Time is represented
on the y-axis. On the x-axis, we have space for two tasks A and B, and a shared
data source they can use. At some point, task A wants to perform an upd oper-
ation. As any kind of parallelism is implemented single-threadedly by the iTask
combinators, the upd function can, in this case, control exactly what gets exe-
cuted before other tasks get execution time again. The programmer gives it a
transformation function, and the upd operation performs the get, function and
set in one single rewrite step. The result of the function is also used as the task
result.

Figure 3 on the right hand side shows the same process, but in a cross-
platform setting. The platforms are separated by a network layer in the middle.
In this case, we again take the transformation function provided by the pro-
grammer. This time we send it over the network to give it to our own task C
running on the side containing the shared data source. This task C then runs
the upd operation with the transformation function, which is executed like in
the single-platform situation (fig. 3, right). Finally, task C sends the task result
back to task A, so it can resume execution as well.

Share

Tim
e

BiTaskA

Share

Tim
e

BiTask

N
etw

ork

A C

Fig. 3. These sequence diagrams show how an upd operation is performed. The left
hand side has tasks A and B running on the same device, while the right hand side
performs the upd over the network.

Using this approach, we guarantee that all semantics introduced in section 4.1
hold. All operations on shares are performed on the single-threaded system where
the shared data source lives, as if it were a single-core system. There is, of
course, a networking delay in reading or writing a shared data source, but our
semantics do not disallow such delay. The Atomicity property is guaranteed
directly in this way. However, for Ordering we do require that messages do
not get reordered in the network connection, and for Convergence we require

Communication for Task-Oriented Systems with Edge Devices 15

that messages always eventually arrive. These requirements are easily fulfilled
by using a communication protocol that gives us such guarantees, such as TCP
or MQTT. The mTask implementation currently supports either of those.

4.3 Semantics of One-Way Synchronization

In section 3.3, we introduced synchronization functions syncItoM and syncMtoI

to synchronize two shares existing in iTask and mTask. This synchronization is
useful only if reading from the synchronized shared data source is semantically
equivalent to reading from the original share. In this section, we show that this
equivalence holds for one-way synchronization. For two-way synchronization, it
is much harder and much more costly to ensure these semantics. These synchro-
nization issues are well documented and out of the scope of this paper [13]. As we
use one-way synchronization only, writing has to be done to the original shared
data source. For convenience, we define the original shared data source as side
A, and the synchronized share as side B.

We now check our synchronization from side A to B against the semantic
guarantees defined in section 4.1. Writing to the shared data source is only
possible on side A. As side A is a shared data source, all semantics for shared
data sources hold on side A automatically. For side B, only the semantics for
read operations have to hold. Atomicity holds, as reading from side B is still
atomic. Ordering holds as well, as the semantics of cross platform shared data
source access ensure this property. The same holds for Convergence.

Another way of looking at this setup is by considering B as a read-only cache
for the shared data source. In this case, the updates are pushed proactively to side
B by the synchronization function, instead of retrieved from side A on-demand
by the cross-platform get function.

If a write from side B is still necessary, we can always use a cross-platform
write to the shared data source on side A, so that the semantics are preserved.

5 Implementation

In this section, we discuss the implementation of the techniques above. We dis-
cuss that the implementation of cross-platform shared data source access only
requires one extra combinator loweriTask. We look at loweritask and discuss
what constructs we require for its implementation. Finally, we show that syn-
chronization in its simplest form also only requires constructs previously defined
in this paper.

5.1 Cross-Platform Access

To perform cross-platform communication safely, we need to execute the read
and/or write on the other side of the network. As we discussed in section 4.2,
the safest and simplest way to do this while maintaining all guarantees and no
code duplication is to insert a task actually performing the get, watch, set or
upd on the side where the shared data source in question lives.

16 Niek Janssen, Mart Lubbers, and Pieter Koopman

iTask Access to mTask Shares For iTask to work with mTask shares we
already have the liftmTask combinator to perform any mTask operation on the
device. We can utilize this to transfer our operation to mTask.

1 mGet :: MTDevice (BCInterpret (Sds a)) � Task a | type a
2 mGet dev sds = liftmTask {main = getSds sds >>∼. rtrn} dev
3

4 mSet :: MTDevice (BCInterpret (Sds a)) a � Task a | type a
5 mSet dev sds a = liftmTask {main = setSds sds (lit a)} dev
6

7 mUpd :: MTDevice ((BCInterpret a) � BCInterpret a) (BCInterpret (Sds a))
8 � Task a | type a
9 mUpd dev fndef sds = liftmTask (

10 fun λfn=fndef In
11 {main=updSds sds fn}) dev

Listing 10. Using liftmTask, we implement iTask access to mTask shares.

Listing 10 shows the implementations for get, set and upd. The BCInterpret

type is the mTask compilation monad. For simplicity, we omit the watch, as it is
similar to get. For get and set, the implementation is trivial. We simply wrap
the mTask version of the operation in a liftmTask. The upd, however, needs a
function, which needs to be provided by the programmer. Due to how functions
definitions are implemented in the shallow embedding of mTask, this function
needs to be defined in the same mTask program as it is used, so the programmer
only needs to give the function body. The exact semantics of mTask functions
are described by Lubbers [9, Section 5.3.2].

mTask Access to iTask Shares To provide mTask access to iTask shares,
we use an approach that is inverse of the approach of providing iTask access
to mTask shares. For this, we need an operator inverse of liftmTask, which we
define in section 5.2. Listing 11 how we use this combinator to implement iTask
shared data source access from mTask.

1 iGet :: (Shared a) � BCInterpret (TaskValue a)
2 | Readable sds & TC a & type a
3 iGet sds = loweriTask (λ_ � get sds) (lit ())
4

5 iSet :: (Shared a) (BCInterpret a) � (BCInterpret (TaskValue a))
6 | Writeable sds & TC a & type a
7 iSet sds value = loweriTask (λa � set a sds) value
8

9 iUpd :: (Shared a) (b a � a) (BCInterpret b) � (BCInterpret (TaskValue a))
10 | RWShared sds & TC a & type a & type b
11 iUpd sds fn value = loweriTask (λb � (upd (fn b) sds)) value

Listing 11. Using loweriTask, we implement mTask access to iTask shares.

5.2 loweriTask

As mentioned in section 5.1, we need a loweriTask combinator to implement
mTask access to iTask shares. Such a combinator contacts the server, executes

Communication for Task-Oriented Systems with Edge Devices 17

a task there, and synchronizes the task value generated by the iTask task with
the mTask task. The signature of loweriTask is given in Listing 12.

1 loweriTask :: (a � Task b) (BCInterpret a) � MTask BCInterpret b

Listing 12. We define the type signature of loweriTask.

The function to be executed in iTask (the first argument) expects exactly
one argument to be passed to the task. Zero or more than one arguments can be
passed by using a unit type or a tuple. This value is sent to the server, along with
the request to start the task. Every time the task value changes, it is sent back
to the mTask device, and set to be the task result of the loweriTask combinator.

To allow for this execution to happen, we need two components: (1) we need
to be able to create an iTask task from the mTask system, and (2) we need to
communicate with the server to be able to start the task.

Creating an iTask Task from mTask We want to be able to execute any
arbitrary Clean/iTask code from our loweriTask combinator. However, mTask
is an embedded DSL, which is restricted in its features compared to the host
language. If we were to implement functions to execute on the server using
the mTask DSL, these restrictions would apply. To circumvent this, we give
loweriTask a task implemented in iTask instead, which is then labelled and
stored on the server. The mTask program then uses this label to instruct the
server on which stored task to execute.

Communicating with the Server The loweriTask function sends a message
to the server to start the iTask task. The iTask server already has an estab-
lished communication channel with the mTask device to start mTask tasks and
obtain task values when completed, which is visualized in the left hand side of
fig. 4. When a connection with a device running the mTask client is made, a
communication task is started. This communication task handles the connection
with the mTask client. The device handle then contains a shared data source
which is used as a communication channel between the communication task and
any other task who needs to communicate with the mTask client. For example,
liftmTask uses these channels to upload a new mTask program to the mTask
device.

We extend this communication infrastructure with the necessary messages
for loweriTask, as visualized on the right hand side of fig. 4. As the liftmTask

function holds all labelled iTask tasks, it listens to task starting requests in the
channel’s shared data source. Once this task is started, it watches task value
updates, and sends them back to the mTask client. Note that the iTask/mTask
programmer does not see any of this; All communication is abstracted away.

5.3 Synchronization

In this section, we provide an implementation of the one-way synchronization
as discussed in section 3.3. We rely heavily on the cross-platform shared data

18 Niek Janssen, Mart Lubbers, and Pieter Koopman

channels

withDevice

liftmTask
comm.

task

connection

mTask
client

mTask
Device

iTask
Server

channels

withDevice

liftmTask
comm.

task

connection

mTask
client

Shares
Taskslowered

iTask

Fig. 4. We show that the existing communication channels can be reused. The left
hand side displays the communication channels used for liftmTask. The right hand
side reuses these channels to implement loweriTask.

source access for the implementation. A one-way synchronization algorithm is
relatively straightforward. We watch the shared data source for updates. As
an optimization, we check if the updated value is actually different from the
previous one. If it is, we update the share on the other side to this new value.
The algorithm to synchronize an iTask share with an mTask shared data source
is given in Listing 13.

1 syncIToM :: MTDevice (Shared a) (BCInterpret (Sds a)) � Task ()
2 | RWShared sds & iTask a & type a
3 syncIToM dev isds msds =
4 get isds >>- λv �
5 detectLoop dev isds msds v
6 where
7 detectLoop :: MTDevice (Shared a) (BCInterpret (Sds a)) a � Task ()
8 | RWShared sds & iTask a & type a
9 detectLoop dev isds msds oldValue =

10 watch isds >>* [OnValue $ ifValue ((=!=) oldValue) $ \newValue �
11 mSet dev msds newValue >-|
12 detectLoop dev isds msds newValue]

Listing 13. syncIToM synchronizes the value of an iTask shared data sourceto an
mTask shared data source using the techniques shown in section 3.1.

We see a watch being used on line 10 to detect updates of the shared data
source on the iTask side. This is followed by a >>* step combinator. The >>* is a
generalized step combinator, which allows choosing for different task continua-
tions based on certain conditions. We use it here to step only if the value of the
shared data source is actually different from the old one. If it is, we continue ex-
ecution and update the shared data source on the mTask side on line 11. Finally
we recursively start the detection algorithm using a recursive call on line 12.

Communication for Task-Oriented Systems with Edge Devices 19

Finally, to start our algorithm, we have to retrieve the value of the shared
data source, to provide an initial old value to the algorithm. This bootstrapping
is done on line 4.

Again, to synchronize an mTask shared data source to an iTask shared data
source, the implementation is inverse of the synchronization of an iTask shared
data source to an mTask shared data source, where the iTask combinators are
exchanged for mTask combinators.

6 Case study

In this section, we implement a system monitoring air quality as a case study.
The example makes use of a few different methods of working with shared data
sources across iTask and mTask. The mTask device is equipped with a DHT
sensor and an air quality sensor. The DHT sensor measures temperature and
humidity. The air quality sensor measures CO2, but needs to be calibrated using
the temperature and humidity.

We create two tasks tempAndHum (line 25) and co2sensor (line 38), that respec-
tively read the temperature, humidity and co2 level from their respective sensors.
The co2sensor task uses the temperature and humidity values to calibrate the
co2 sensor.

Any time the temperature or co2 level strays too far from their optimal values,
an alarm level is increased. An interface to set these optimal values, as well as
view the alarm level and co2 level, is implemented in the function interface

(line 17). The functions updateInformation (lines 19 and 20) and viewInformation

(lines 22 and 23) provide this functionality.
The shared data sources necessary to communicate between tasks are defined

in the main function start (line 1). They consist of:

– iOptTempSds, mOptTempSds, iMaxCO2Sds and mMaxCO2Sds (lines 4 and 5) form
two pairs of synchronized shares, created by withDoublyShared. Because of
the ItoM, the value of the iTask share is synchronized to the mTask share.

– iAlarmSds (line 7) counts the alarms, and only has a copy on the server. The
device accesses this share directly to set the alarm (lines 36 and 46).

– iAirQualitySds (line 8) holds the co2 value, and only has a copy on the
client. The server accesses this share directly to display the value (line 21).

– mCurTempSds and mCurHumSds (lines 9 and 10) are only accessed on the device
to communicate the current temperature and humidity to the co2 sensor
task.

The implementation is available in Listing 14.

1 start :: TCPSettings � Task ()
2 start deviceInfo =
3 withDevice deviceInfo λdevice �
4 withDoublyShared device ItoM 20.0 λiOptTempSds mOptTempSds �
5 withDoublyShared device ItoM 1200 λiMaxCO2Sds mMaxCO2Sds �
6

7 withShared 0 λiAlarmSds �

20 Niek Janssen, Mart Lubbers, and Pieter Koopman

8 withMTaskShared device 0 λmAirqualitySds �
9 withMTaskShared device 0.0 λmCurTempSds �

10 withMTaskShared device 0.0 λmCurHumSds �
11

12 interface device iOptTempSds mAirqualitySds iMaxCO2Sds iAlarmSds -| |
13 liftmTask (tempAndHum mCurTempSds mCurHumSds mOptTempSds iAlarmSds) device -| |
14 liftmTask (co2monitor mCurTempSds mCurHumSds mAirqualitySds mMaxCO2Sds iAlarmSds)
15 device
16

17 interface :: MTDevice (ISDS Real) (MSDS Int) (ISDS Int) (ISDS Int) � Task ()
18 interface device iOptTempSds mAirqualitySds iMaxCO2Sds iAlarmSds =
19 (updateSharedInformation [] iOptTempSds <<@ Label "Optimal temperature (C)") | |-
20 (updateSharedInformation [] iMaxCO2Sds <<@ Label "Maximum co2 (ppm)") | |-
21 mWatch device mAirqualitySds >&> λiAirQualitySds �
22 (viewSharedInformation [] iAirQualitySds <<@ Label "Current air quality") | |-
23 (viewSharedInformation [] iAlarmSds <<@ Label "Alarm level") @! ()
24

25 tempAndHum :: (MSDS Real) (MSDS Real) (MSDS Real) (ISDS Int) � MTaskMain ()
26 tempAndHum mCurTempSds mCurHumSds mOptTempSds iAlarmSds =
27 dht (DHT_DHT (DigitalPin D2) DHT22) λdht � main (
28

29 rpeatEvery (BeforeSec $ lit 30) (
30 temperature dht >>∼. λtemp �
31 humidity dht >>∼. λhum �
32 setSds mCurTempSds temp >>|.
33 setSds mCurHumSds hum >>|.
34 getSds mOptTempSds >>∼. λoptTemp �
35 Iff (mAbs (optTemp -. temp) >. lit 2.0)
36 (iUpd iAlarmSds (λ_ i � i+1) (lit ()))))
37

38 co2monitor :: (MSDS Real) (MSDS Real) (MSDS Int) (MSDS Int) (ISDS Int)�MTaskMain()
39 co2monitor mCurTempSds mCurHumSds mAirqualitySds mMaxCO2Sds iAlarmSds =
40 airqualitySensor AQS_SGP30 λsensor � main (
41

42 rpeatEvery (BeforeSec $ lit 30) (// Check CO2 level every 30 seconds
43 co2 sensor >>∼. λco2level �
44 setSds mAirqualitySds co2level >>|.
45 getSds mMaxCO2Sds >>∼. λmaxCO2 �
46 Iff (co2level >. maxCO2) (iUpd iAlarmSds (λ_ i � i+1) (lit ()))
47) .||.
48 rpeatEvery (BeforeSec $ lit 600) (// Recalibrate sensor every 10 minutes
49 getSds mCurTempSds >>∼. λtemp �
50 getSds mCurHumSds >>∼. λhum �
51 setEnvironmentalData sensor temp hum
52))

Listing 14. The source code for the air quality monitoring system.

In this example we see several utilisations of shared data sources that were
not possible in the old implementation. There are four major usages of these
new shared data sources that were not possible in the old situation:

Communication for Task-Oriented Systems with Edge Devices 21

In the new implementation. . . In the old implementation . . .

The shared data sources for the opti-
mal temperature and max CO2 values
(lines 4 and 5) are created, and syn-
chronized only from the server to the
client.

The old implementation only has
bi-directionally linked shared data
sources.

The shared data sources for cur-
rent temperature and current humid-
ity (lines 9 and 10) only exist on the
device.

Each mTask task needs to have its
own shared data source, both con-
nected to the same shared data source
on the server. Everything is synchro-
nized automatically, and all commu-
nication has to go via the server.

The shared data source for air quality
(line 8) is directly accessible from the
server. If we only occasionally needed
the value for something, we only oc-
casionally have to retrieve the value.

The server has its own shared data
source that is linked, always keeping
it up to date. Communication would
take place whenever the client has a
new value.

The shared data source counting the
alarms (line 7) is safely updated from
both the tempAndHum task (line 25) and
the airQuality task (line 38) by di-
rectly performing the +1 operation on
the server.

Both the tempAndHum task (line 25)
and the airQuality task (line 38) have
their own copy. The +1 operation
is performed on the copy, and after-
wards synchronized to the rest of the
linked shared data sources, leading to
race conditions.

7 Related Work

On smaller IoT devices using microcontrollers, the industry standard for writ-
ing applications is the programming language C. The simplest, most bare-bones
option for the implementation of communication, is to use TCP or UDP con-
nections directly [20]. On top of this, high-level communication protocols like
HTTP or web sockets can be used. Alternatively, a message broker like MQTT
or AMQP can be used. These options are explored and compared in a paper
by Naik [12]. The mTask system supports both TCP and MQTT for communi-
cation. The programmer, however, never needs to send TCP/MQTT messages
directly. This communication is all fully implied by starting/ending tasks, or
writing to shared data sources cross platform.

On bigger IoT devices running a full operating system, any solution that
also runs on normal computers and web servers can be employed. While this
paper focusses on smaller IoT devices using microcontrollers, the same princi-
ples can be applied to bigger IoT devices. Distributed iTask implements proxy
access to shared data sources similar to the interface of this paper [14, Section
4.2]. Another possibility is to run a full-fledged distributed memory system like
Erlang [1].

22 Niek Janssen, Mart Lubbers, and Pieter Koopman

mTask provides fine-grained control over what code gets executed on what
device, using the liftmTask and loweriTask combinators. Other systems deter-
mine automatically what code runs on the server, and what runs on the client.
In contrast to our solution, these systems assume that all nodes are powerful
enough to execute any code fragment. A tierless JavaScript project created by
Philips et al. [16] uses static code analysis, and inserts remote calls automati-
cally into the code where necessary. JavaScript is an object-oriented language
with extensive access to program state, so shared data sources and/or synchro-
nization are not implemented. Potato is a reactive programming solution for IoT
problems in the Elixir/Erlang world, using a similar approach [3]. Potato is a
specific version of functional reactive programming [5]. A (remote) observable in
Potato is somewhat similar to a SDS in task-oriented programming. The main
difference is that an observable produces a stream of values, while a SDS only
has a single current value that changes over time.

Our implementation of loweriTask uses tagged functions which are then re-
motely triggered to be executed. This is similar to remote function calls in other
programming languages or frameworks. Because of our tierless setup [11], the
mTask programmer does not need to define these tags and/or interfaces them-
selves. Instead, these tasks are generated from the single source file, and auto-
matically inserted into the compiled mTask program.

8 Conclusion

In this paper, we improve our single source solution for communication between
edge devices in IoT systems with their server. In the existing solution, the server
could spawn tasks on the edge device. The tasks on the server and edge device
can communicate via shared data sources during their execution.

We introduce separate shares on the server and the device. The interface to
these shares on the server and the edge device is very similar. The semantics of
the shares on the edge device is a proper subset of the server-based shares.

The server updates or reads a shared data source on the device by spawning
an appropriate task. This requires the edge device-wide shared data sources
introduced here. In the previous system, every task on the edge device had its
own copy of the shared data source on the server.

To facilitate easy and efficient communication from edge device tasks to server
tasks, the device tasks can invoke a parameterized task on the server. Our exam-
ples show that this yields a convenient abstraction level for safe communication.

Unidirectional synchronization from server to device, or vice versa, has still
a well-defined semantics. This is easily expressed as a general task in our new
abstraction level. The remote shared data source will reflect any value that lasts
long enough with some delay.

All code shown here is implemented in the existing iTask system for the
server and mTask system for task-oriented programming. All code shown in this
paper is available online [7].

Communication for Task-Oriented Systems with Edge Devices 23

9 Future Work

In this paper, we have shown how shares can be used to greatly improve com-
munication between an mTask device and a web server. However, there are still
some open questions.

Currently, all types in mTask are required to be of fixed size, including values
for shared data sources. This means that recursive abstract data types like lists/
queues/trees are not supported. It is an open problem to see how we can add
support for those data types on mTask devices, given the fact that the amount of
memory is very limited, and no memory virtualization exists. This could be very
useful when we want to implement for example a message queue. This message
queue could use an actual queue data structure inside a shared data source.

Secondly, we only discussed one-on-one communication for shares, between
a server and a device. Communication between two mTask devices is forced to
take a detour via the server. When two devices are on the same end of a low-
bandwidth connection, direct device to device communication is preferable. This
could also be used for swarm behaviour, or mesh networks of mTask devices.

Bibliography

[1] Joe Armstrong, editor. Concurrent Programming in ERLANG. Prentice
Hall, London ; New York, 2nd ed edition, 1996. ISBN 978-0-13-508301-7.

[2] Haye Böhm. Asynchronous Actions in a Synchronous World. Master’s
thesis, Radboud University, Nijmegen, Netherlands, January 2019.

[3] Christophe De Troyer, Jens Nicolay, and Wolfgang De Meuter. Building
IoT Systems Using Distributed First-Class Reactive Programming. In 2018
IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), pages 185–192, Nicosia, December 2018. IEEE. ISBN
978-1-5386-7899-2. https://doi.org/10.1109/CloudCom2018.2018.00045.

[4] László Domoszlai, Bas Lijnse, and Rinus Plasmeijer. Parametric lenses:
Change notification for bidirectional lenses. In Proceedings of the 26nd 2014
International Symposium on Implementation and Application of Functional
Languages, pages 1–11, Boston MA USA, October 2014. ACM. ISBN 978-
1-4503-3284-2. https://doi.org/10.1145/2746325.2746333.

[5] Paul Hudak. Functional reactive programming. In S. Doaitse Swierstra,
editor, Programming Languages and Systems, pages 1–1, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg. ISBN 978-3-540-49099-9.

[6] Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh.
A Classification of Object-Relational Impedance Mismatch. In First In-
ternational Conference on Advances in Databases, Knowledge, and Data
Applications, pages 36–43, Cancun, Mexico, 2009. IEEE. ISBN 978-0-7695-
3550-0. https://doi.org/10.1109/DBKDA.2009.11.

[7] Niek Janssen, Mart Lubbers, and Pieter Koopman. Source code for paper
Distributed Data in Task-Oriented Programming on edge devices. 2024.
https://doi.org/10.5281/zenodo.14236133.

[8] Pieter Koopman, Mart Lubbers, and Rinus Plasmeijer. A Task-Based DSL
for Microcomputers. In Proceedings of the Real World Domain Specific
Languages Workshop 2018, pages 1–11, Vienna Austria, February 2018.
ACM. ISBN 978-1-4503-6355-6. https://doi.org/10.1145/3183895.3183902.

[9] Mart Lubbers. Orchestrating the Internet of Things with Task-Oriented
Programming. Radboud University Press, 1 edition, October 2023. ISBN
978-94-93296-11-4. https://doi.org/10.54195/9789493296114.

[10] Mart Lubbers and Peter Achten. Clean for haskell programmers, 2024. URL
https://arxiv.org/abs/2411.00037.

[11] Mart Lubbers, Pieter Koopman, Adrian Ramsingh, Jeremy Singer, and Phil
Trinder. Could Tierless Languages Reduce IoT Development Grief? ACM
Transactions on Internet of Things, 4(1):1–35, February 2023. ISSN 2691-
1914, 2577-6207. https://doi.org/10.1145/3572901.

[12] Nitin Naik. Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP. In 2017 IEEE International Systems Engineer-
ing Symposium (ISSE), pages 1–7, Vienna, Austria, October 2017. IEEE.
ISBN 978-1-5386-3403-5. https://doi.org/10.1109/SysEng.2017.8088251.

https://doi.org/10.1109/CloudCom2018.2018.00045
https://doi.org/10.1109/CloudCom2018.2018.00045
https://doi.org/10.1145/2746325.2746333
https://doi.org/10.1145/2746325.2746333
https://doi.org/10.1109/DBKDA.2009.11
https://doi.org/10.1109/DBKDA.2009.11
https://doi.org/10.5281/zenodo.14236133
https://doi.org/10.5281/zenodo.14236133
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.54195/9789493296114
https://doi.org/10.54195/9789493296114
https://arxiv.org/abs/2411.00037
https://doi.org/10.1145/3572901
https://doi.org/10.1145/3572901
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/SysEng.2017.8088251

Communication for Task-Oriented Systems with Edge Devices 25

[13] Robert H. B. Netzer and Barton P. Miller. What are race conditions?:
Some issues and formalizations. ACM Letters on Programming Languages
and Systems, 1(1):74–88, March 1992. ISSN 1057-4514, 1557-7384. https:
//doi.org/10.1145/130616.130623.

[14] Arjan Oortgiese, John Van Groningen, Peter Achten, and Rinus Plas-
meijer. A Distributed Dynamic Architecture for Task Oriented Pro-
gramming. In Proceedings of the 29th Symposium on the Implementa-
tion and Application of Functional Programming Languages, pages 1–12,
Bristol United Kingdom, August 2017. ACM. ISBN 978-1-4503-6343-3.
https://doi.org/10.1145/3205368.3205375.

[15] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language De-
sign and Implementation, pages 199–208, Atlanta Georgia USA, June 1988.
ACM. ISBN 978-0-89791-269-3. https://doi.org/10.1145/53990.54010.

[16] Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang
De Meuter. Towards Tierless Web Development without Tierless Languages.
In Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software, pages 69–
81, Portland Oregon USA, October 2014. ACM. ISBN 978-1-4503-3210-1.
https://doi.org/10.1145/2661136.2661146.

[17] Rinus Plasmeijer and Marko Van Eekelen. Keep it clean: A unique approach
to functional programming. ACM SIGPLAN Notices, 34(6):23–31, June
1999. ISSN 0362-1340, 1558-1160. https://doi.org/10.1145/606666.606670.

[18] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: Executable
specifications of interactive work flow systems for the web. ACM SIGPLAN
Notices, 42(9):141–152, October 2007. ISSN 0362-1340, 1558-1160. https:
//doi.org/10.1145/1291220.1291174.

[19] Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter
Koopman. Task-Oriented Programming in a Pure Functional Language. In
Proceedings of the 14th Symposium on Principles and Practice of Declarative
Programming, PPDP ’12, pages 195–206, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1522-7. https://doi.org/10.1145/2370776.2370801.

[20] W. Richard Stevens and Kevin W. Fall. TCP/IP Illustrated. Volume 1,
The Protocols. Addison-Wesley, Boston, MA, 2nd ed edition, 1994. ISBN
978-0-13-280820-0.

https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/3205368.3205375
https://doi.org/10.1145/3205368.3205375
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/606666.606670
https://doi.org/10.1145/606666.606670
https://doi.org/10.1145/1291220.1291174
https://doi.org/10.1145/1291220.1291174
https://doi.org/10.1145/1291220.1291174
https://doi.org/10.1145/1291220.1291174
https://doi.org/10.1145/2370776.2370801
https://doi.org/10.1145/2370776.2370801

	Communication for Task-Oriented Systems with Edge Devices

