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Internet of Things (IoT) software is notoriously complex, conventionally comprising multiple tiers. Traditionally an IoT

developer must use multiple programming languages and ensure that the components interoperate correctly. A novel

alternative is to use a single tierless language with a compiler that generates the code for each component and ensures their

correct interoperation.

We report a systematic comparative evaluation of two tierless language technologies for IoT stacks: one for resource-rich

sensor nodes (Clean with iTask), and one for resource-constrained sensor nodes (Clean with iTask and mTask). The evaluation

is based on four implementations of a typical smart campus application: two tierless and two Python-based tiered.

(1) We show that tierless languages have the potential to signiicantly reduce the development efort for IoT systems,

requiring 70% less code than the tiered implementations. Careful analysis attributes this code reduction to reduced interopera-

tion (e.g. two embedded domain-speciic languages (DSLs) and one paradigm versus seven languages and two paradigms),

automatically generated distributed communication, and powerful IoT programming abstractions. (2) We show that tierless

languages have the potential to signiicantly improve the reliability of IoT systems, describing how Clean iTask/mTask

maintains type safety, provides higher order failure management, and simpliies maintainability. (3) We report the irst

comparison of a tierless IoT codebase for resource-rich sensor nodes with one for resource-constrained sensor nodes. The

comparison shows that they have similar code size (within 7%), and functional structure. (4) We present the irst comparison

of two tierless IoT languages, one for resource-rich sensor nodes, and the other for resource-constrained sensor nodes.

CCS Concepts: · Computer systems organization → Sensor networks; Embedded software; · Software and its engi-

neering→ Domain speciic languages.

Additional Key Words and Phrases: Tierless languages, IoT stacks

1 INTRODUCTION

Conventional Internet of Things (IoT) software stacks are notoriously complex and pose very signiicant software

development, reliability, and maintenance challenges. IoT software architectures typically comprise multiple

components organised in four or more tiers or layers [5, 60, 67]. This is due to the highly distributed nature of

typical IoT applications that must read sensor data from end points (the perception layer), aggregate and select
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the data and communicate over a network (the network layer), store the data in a database and analyse it (the

application layer) and display views of the data, commonly on web pages (the presentation layer).

Conventional IoT software architectures require the development of separate programs in various programming

languages for each of the components/tiers in the stack. This is modular, but a signiicant burden for developers,

and some key challenges are as follows. (1) Interoperating components in multiple languages and paradigms

increases the developer’s cognitive load who must simultaneously think in multiple languages and paradigms,

i.e. manage signiicant semantic friction. (2) The developer must correctly interoperate the components, e.g.

adhere to the API or communication protocols between components. (3) To ensure correctness the developer

must maintain type safety across a range of very diferent languages and diverse type systems. (4) The developer

must deal with the potentially diverse failure modes of each component, and of component interoperations.

A radical alternative development paradigm uses a single tierless language that synthesizes all components/tiers

in the software stack. There are established tierless languages for web stacks, e.g. Links [15] or Hop [66].

In a tierless language the developer writes the application as a single program. The code for diferent tiers

is simultaneously checked by the compiler, and compiled to the required component languages. For example,

Links compiles to HTML and JavaScript for the web client and to SQL on the server to interact with the database

system. Tierless languages for IoT stacks are more recent and less common, examples include Potato [79] and

Clean with iTask/mTask [43].

IoT sensor nodes may be microcontrollers with very limited compute resources, or supersensors: resource-rich

single board computers like a Raspberry Pi. A tierless language may target either class of sensor node, and

microcontrollers are the more demanding target due to the limited resources, e.g. small memory, executing on

bare metal etc.

Potentially a tierless language both reduces the development efort and improves correctness as correct

interoperation and communication is automatically generated by the compiler. A tierless language may, how-

ever, introduce other problems. How expressive is the language? That is, can it readily express the required

functionality? How maintainable is the software? Is the generated code eicient in terms of time, space, and

power?

This paper reports a systematic comparative evaluation of two tierless language technologies for IoT stacks:

one targeting resource-constrained microcontrollers, and the other resource-rich supersensors. The basis of

the comparison is four implementations of a typical smart campus IoT stack [29]. Two implementations are

conventional tiered Python-based stacks: PRS (Python Raspberry Pi System) and PWS (Python Wemos System).

The other two implementations are tierless: CRS (Clean Raspberry Pi System) and CWS (Clean Wemos System).

Our work makes the following research contributions, and the key results are summarised, discussed, and

quantiied in Section 9.

C1 We show that tierless languages have the potential to signiicantly reduce the development efort for IoT systems.

We systematically compare code size (source lines of code (SLOC)) of the four smart campus implementations

as a measure of development efort and maintainability [4, 63]. The tierless implementations require 70%

less code than the tiered implementations. We analyse the codebases to attribute the code reduction to

three factors. (1) Tierless languages beneit from reduced interoperation, requiring far fewer languages,

paradigms and source code iles e.g. CWS uses two languages, one paradigm and three source code iles

where PWS uses seven languages, two paradigms and 35 source code iles (Tables 2 and 3). (2) Tierless

languages beneit from automatically synthesized, and hence correct, communication between components

that may be distributed. (3) Tierless languages beneit from high-level programming abstractions like

compositional and higher-order task combinators (Section 6).

C2 We show that tierless languages have the potential to signiicantly improve the reliability of IoT systems. We

demonstrate how tierless languages preserve type safety, improve maintainability and provide high-level
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failure management. For example, we illustrate a loss of type safety in PRS. We also critique current tool

and community support (Section 7).

C3 We report the irst comparison of a tierless IoT codebase for resource-rich sensor nodes with one for resource-

constrained sensor nodes. The tierless smart campus implementations have a very similar code size (within

7%), as do the tiered implementations. This suggests that the development and maintenance efort of simple

tierless IoT systems for resource-constrained and for resource-rich sensor nodes is similar, as it is for tiered

technologies. The percentages of code required to implement each IoT functionality in the tierless Clean

implementations is very similar, as it is in the tiered Python implementations. This suggests that the code

for resource-constrained and resource-rich sensor nodes is broadly similar in tierless technologies, as in

tiered technologies (Section 6.2)

C4 We present the irst comparison of two tierless IoT languages, one designed for resource-constrained sensor nodes

(Clean with iTask and mTask), and the other for resource-rich sensor nodes (Clean with iTask). We show that

the bare metal execution environment enforces some restrictions on mTask although they remain high

level. Moreover, the environment conveys some advantages, e.g. better control over timing (Section 8).

The current work extends [46] as follows. Contributions C3 and C4 are entirely new, and C1 is enhanced by

being based on the analysis of four rather than two languages and implementations.

2 BACKGROUND AND RELATED WORK

2.1 University of Glasgow smart campus

The University of Glasgow (UoG) is partway through a ten-year campus upgrade programme, and a key goal is

to embed pervasive sensing infrastructure into the new physical fabric to form a smart campus environment. As

a prototyping exercise, we use modest commodity sensor nodes (i.e. Raspberry Pis) and low-cost, low-precision

sensors for indoor environmental monitoring.

We have deployed sensor nodes into 12 rooms in two buildings. The IoT system has an online data store,

providing live access to sensor data through a RESTful API. This allows campus stakeholders to add functionality

at a business layer above the layers that we consider here. To date, simple apps have been developed including

room temperature monitors and campus utilization maps [29]. A longitudinal study of sensor accuracy has also

been conducted [27].

2.2 IoT applications

Web applications are necessarily complex distributed systems, with client browsers interacting with a remote

webserver and data store. Typical IoT applications

are even more complex as they combine a web application with a second distributed system of sensor and

actuator nodes that collect and aggregate data, operate on it, and communicate with the server.

Both web and IoT applications are commonly structured into tiers, e.g. the classical four-tier Linux, Apache,

MySQL and PHP (LAMP) stack.

IoT stacks typically have more tiers than webapps, with the number depending on the complexity of the

application [67]. While other tiers, like the business layer [52] may be added above them, the focus of our study

is on programming the lower four tiers of the PRS, CRS, PWS and CWS stacks, as illustrated in Figure 1.

(1) Perception Layer ś collects the data, interacts with the environment, and consists of devices using light,

sound, motion, air quality and temperature sensors.

(2) Network Layer ś replays the communication messages between the sensor nodes and the server through

protocols such as MQTT.

(3) Application Layer ś acts as the interface between the presentation layer and the perception layer, storing

and processing the data.
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Application Layer
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Fig. 1. PRS and PWS (let) together with CRS and PRS (right) mapped to the four-tier IoT architecture. Every box is the

diagram denotes a source file or base. Bold blue text describes the language or technology used in that source. The network

and perception layer are unique to the specific implementation, where the application and presentation layers are shared

between implementations.

(4) Presentation Layer ś utilises web components as the interface between the human and devices where

application services are provided.

2.3 The benefits and challenges of developing tiered IoT stacks

Using multiple tiers to structure complex software is a common software engineering practice that provides

signiicant architectural beneits for IoT and other software. The tiered Python PRS and PWS stacks exhibit these

beneits.

(1) Modularity ś tiers allow a system to be structured as a set of components with clearly deined functionality.

They can be implemented independently, and may be interchanged with other components that have

similar functionality [47]. In PRS and PWS, for example, a diferent NoSQL DBMS could relatively easily be

substituted for MongoDB.

(2) Abstraction ś the hierarchical composition of components in the stack abstracts the view of the system as

a whole. Enough detail is provided to understand the roles of each layer and how the components relate to

one another [10]. Figure 1 illustrates the abstraction of PRS and PWS into four tiers.

(3) Cohesion ś well-deined boundaries ensure each tier contains functionality directly related to the task of

the component [40]. The tiers in PRS and PWS contain all the functionality associated with perception,

networking, application and presentation respectively.

However, a tiered architecture poses signiicant challenges for developers of IoT and other software. The tiered

Python PRS and PWS stacks exhibit these challenges, and we analyse these in detail later in the paper.
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(1) Polyglot Development ś the developer must be luent in all the languages and components in the stack,

known as being a full stack developer for webapps [50]. That is, the developer must correctly use multiple

languages that have diferent paradigms, i.e. manage signiicant semantic friction [34]. For example the

PWS developer must integrate components written in seven languages with two paradigms (Section 6.3).

(2) Correct Interoperation ś the developer must adhere to the API or communication protocols between

components. Sections 6.1 and 6.2 show that communication requires some 17% of PRS and PWS code, so

around 100 lines of code. Section 6.4 discusses the complexity of writing this distributed communication

code.

(3) Maintaining Type Safety ś is a key element of the semantic friction encountered in multi-language stacks,

and crucial for correctness. The developer must maintain type safety across a range of very diferent

languages and diverse type systems, with minimal tool support. We show an example where PRS loses

type safety over the network layer (Section 7.1).

(4) Managing multiple failure modes ś diferent components may have diferent failure modes, and these must

be coordinated. Section 7.2 outlines how PRS and PWS use heartbeats to manage failures.

Beyond PRS and PWS the challenges of tiered polyglot software development are evidenced in real world

studies. As recent examples, a study of GitHub open source projects found an average of ive diferent languages

in each project, with many using tiered architectures [49]. An earlier empirical study of GitHub shows that using

more languages to implement a project has a signiicant efect on project quality, since it increases defects [36].

A study of IoT stack developers found that interoperation poses a real challenge, that microservices blur the

abstraction between tiers, and that both testing and scaling IoT applications to more devices are hard [51].

One way of minimising the challenges of developing tiered polyglot IoT software is to standardise and reuse

components. This approach has been hugely successful for web stacks, e.g. browser standards. The W3C Web

of Things aims to facilitate re-use by providing standardised metadata and other re-usable technological IoT

building blocks [24]. However, the Web of Things has yet to gain widespread adoption. Moreover, as it is based

on web technology, it requires the thing to run a web server, signiicantly increasing the hardware requirements.

3 TIERLESS LANGUAGES

A radical approach to overcoming the challenges raised by tiered distributed software is to use a tierless pro-

gramming language that eliminates the semantic friction between tiers by generating code for all tiers, and all

communication between tiers, from a single program.

Typically a tierless program uses a single language, paradigm and type system, and the entire distributed

system is simultaneously checked by the compiler.

There is intense interest in developing tierless, or multitier, language technologies with a number of research

languages developed over the last ifteen years, e.g. [15, 19, 66, 79]. These languages demonstrate the advantages

of the paradigm, including less development efort, better maintainability, and sound semantics of distributed

execution. At the same time a number of industrial technologies incorporate tierless concepts, e.g. [8, 11, 73].

These languages demonstrate the beneits of the paradigm in practice. Some tierless languages use (embedded)

domain-speciic languages (DSLs) to specify parts of the multi-tier software.

Tierless languages have been developed for a range of distributed paradigms, including web applications,

client-server applications, mobile applications, and generic distributed systems. A recent and substantial survey

of these tierless technologies is available [82]. Here we provide a brief introduction to tierless languages with a

focus on IoT software.
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3.1 Tierless Web Languages

There are established tierless languages for web development, both standalone languages and DSLs embedded in a

host language. Example standalone tierless web languages are Links [15] and Hop [66]. From a single declarative

program the client, server and database code is simultaneously checked by the compiler, and compiled to the

required component languages. For example, Links compiles to HTML and JavaScript for the client side and to

SQL on the server-side to interact with the database system.

An example tierless web framework that uses a DSL is Haste [19], that embeds the DSL in Haskell. Haste

programs are compiled multiple times: the server code is generated by the standard GHC Haskell compiler [26];

Javascript for the client is generated by a custom GHC compiler backend. The design leverages Haskell’s high-level

programming abstractions and strong typing, and beneits from GHC: a mature and sophisticated compiler.

3.2 Tierless IoT Languages

The use of tierless languages in IoT applications is both more recent and less common than for web applications.

Tierless IoT programming may extend tierless web programming by adding network and perception layers. The

presentation layer of a tierless IoT language, like tierless web languages, beneits from almost invariably executing

in a standard browser. The perception layer faces greater challenges, often executing on one of a set of slow and

resource-constrained microcontrollers. Hence, tierless IoT languages typically compile the perception layer to

either C/C++ (the lingua franca of microcontrollers), or to some intermediate representation to be interpreted.

3.2.1 DSLs for microcontrollers. Many DSLs provide high-level programming for microcontrollers, for example

providing strong typing and memory safety.

For example Copilot [31]

and Ivory [20] are imperative DSLs embedded in a functional language that compile to C/C++. In contrast

to Clean iTask/mTask such DSLs are not tierless IoT languages as they have no automatic integration with the

server, i.e. with the application and presentation layers.

3.2.2 Functional Reactive Programming. Functional reactive programming (FRP) is a declarative paradigm often

used for implementing the perception layer of an IoT stack. Examples include mfrp [65],

Hailstorm [64], and Haski [80]. None of these languages are tierless IoT languages as they have no automatic

integration with the server.

Potato goes beyond other FRP languages to provide a tierless FRP IoT language for resource rich sensor

nodes [79]. It does so using the Erlang programming language and sophisticated virtual machine.

TOP allows for more complex collaboration patterns than FRP [74], and in consequence is unable to provide

the strong guarantees on memory usage available in a restricted variant of FRP such as arrowized FRP [53].

3.2.3 Erlang/Elixir IoT systems. A number of production IoT systems are engineered in Erlang or Elixir, and

many are mostly tierless. That is the perception, network and application layers are sets of distributed Erlang

processes, although the presentation layer typically uses some conventional web technology. A resource-rich

sensor node may support many Erlang processes on an Erlang VM, or low level code (typically C/C++) on a

resource-constrained microcontroller can emulate an Erlang process. Only a small fraction of these systems are

described in the academic literature, example exceptions are [69, 70], with many described only in grey literature

or not at all.

3.3 Characteristics of Tierless IoT Languages

This study compares a pair of tierless IoT languages with conventional tiered Python IoT software. Clean with

iTask and Clean iTask/mTask represent a speciic set of tierless language design decisions, however many

alternative designs are available. Crucially the limitations of the tierless Clean languages, e.g. that they currently
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provide limited security, should not be seen as limitations of tierless technologies in general. This section briely

outlines key design decisions for tierless IoT languages, discusses alternative designs, and describes the Clean

designs. The Clean designs are illustrated in the examples in the following section.

3.3.1 Tier Spliting and Placement. A key challenge for a tierless language is to determine which parts of the

program correspond to a particular tier and hence should be executed by a speciic component on a speciic host.

For example a tierless web language must identify client code to ship to browsers, database code to execute in the

DBMS, and application code to run on the server. Tierless web languages can make this determination statically,

so-called tier splitting using types or syntactic markers like server or client pragmas [15, 19]. It is even possible

to infer the splitting, relieving the developers from the need to specify it, as illustrated for Javascript as a tierless

web language [56].

In Clean iTask/mTask and Clean with iTask tier splitting is speciied by functions, e.g. the Clean with iTask

asyncTask function identiies a task for execution on a remote device and liftmTask executes the given task on an

IoT device. The tier splitting functions are illustrated in examples in the next section, e.g. on line 17 in Listing 3

and line 30 in Listing 4. Specifying splitting as functions means that new splitting functions can be composed,

and that splitting is under program control, e.g. during execution a program can decide to run a task locally or

remotely.

As IoT stacks are more complex than web stacks, the placement of data and computations onto the devices/hosts

in the system is more challenging. In many IoT systems placement is manual: the sensor nodes are microcontrollers

that are programmed bywriting the program to lashmemory. So physical access to themicrocontroller is normally

required to change the program, making updates challenging.

Techniques like over-the-air programming and interpreters allow microcontrollers to be dynamically pro-

visioned, increasing their maintainability and resilience. For example Baccelli et al. provide a single language

IoT system based on the RIOT operating system (OS) that allows runtime deployment of code snippets called

containers [7]. Both client and server are written in JavaScript. However, there is no integration between the

client and the server other than that they are programmed from a single source. Matè is an example of an early

tierless sensor network framework where devices are provided with a virtual machine using TinyOS for dynamic

provisioning [41].

In general diferent tierless languages specify placement in diferent ways, e.g. code annotations or coniguration

iles, and at diferent granularities, e.g. per function or per class [82].

Clean iTask/mTask and Clean with iTask both use dynamic task placement. In Clean iTask/mTask sensor nodes

are programmed once with the mTask RTS, and possibly some precompiled tasks. Thereafter a sensor node can

dynamically receive mTask programs, compiled at runtime by the server. In Clean with iTask the sensor node

runs an iTask server that recieves and executes code from the (IoT) server [54].

Placement happens automatically as part of the irst-class splitting constructs, so line 30 in Listing 4 places

devTask onto the dev sensor node.

3.3.2 Communication. Tierless languages may adopt a range of communication paradigms for communicat-

ing between components. Diferent tierless languages specify communication in diferent ways [82]. Remote

procedures are the most common communication mechanism: a procedure/function executing on a remote

host/machine is called as if it was local. The communication of the arguments to, and the results from, the remote

procedure is automatically provided by the language implementation. Other mechanisms include explicit message

passing between components; publish/subscribe where components subscribe to topics of interest from other

components; reactive programming deines event streams between remote components; inally shared state

makes changes in a shared and potentially remote data structure visible to components.

Clean iTask/mTask and Clean with iTask communicate using a combination of remote task invocation, similar

to remote procedures, and shared state through Shared Data Stores (SDSs). Listing 3 illustrates: line 17 shows a
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server task launching a remote task, devTask, on to a sensor node; and line 19 shows the sharing of the remote

latestTemp SDS.

3.3.3 Security. Security is a major issue and a considerable challenge for many IoT systems [2]. There are poten-

tially security issues at each layer in an IoT application (Figure 1). The security issues and defence mechanisms

at the application and presentation layers are relatively standard, e.g. defending against SQL injection attacks.

The security issues at the network and perception layers are more challenging. Resource-rich sensor nodes can

adopt some standard security measures like encrypting messages, and regularly applying software patches to the

operating system. However microcontrollers often lack the computational resources for encryption, and it is

hard to patch their system software because the program is often stored in lash memory. In consequence there

are infamous examples of IoT systems being hijacked to create botnets [6, 30].

Securing the entire stack in a conventional tiered IoT application is particularly challenging as the stack

is implemented in a collection of programming languages with low level programming and communication

abstractions. In such polyglot distributed systems it is hard to determine, and hence secure, the low of data

between components. In consequence a small mistake may have severe security implications.

A number of characteristics of tierless languages help to improve security. Communication and placement

vulnerabilities are minimised as communication and placement are automatically generated and checked by the

compiler. So injection attacks and the exploitation of communication/placement protocol bugs are less likely.

Vulnerabilities introduced bymismatched types are avoided as the entire system is type checked. Moreover, tierless

languages can exploit language level security techniques. For example languages like Jif/split [84] and Swift [14]

place components to protect the security of data. Another example are programming language technologies for

controlling information low, and these can be used to improve security. For example Haski uses them to improve

the security of IoT systems [80].

However many tierless languages have yet to provide a comprehensive set of security technologies, despite its

importance in domains like web and IoT applications. For example Erlang and many Erlang-based systems [69, 70],

lack important security measures. Indeed security is not covered in a recent, otherwise comprehensive, survey of

tierless technologies [82].

Clean with iTask and Clean iTask/mTask are typical in this respect: little efort has yet been expended on

improving their security. Of course as tierless languages they beneit from static type safety and automatically

generated communication and placement. Some preliminary work shows that, as the communication between

layers is protocol agnostic, more secure alternatives can be used. One example is to run the iTask server behind a

reverse proxy implementing TLS/SSL encryption [83]. A second is to add integrity checks or even encryption to

the communication protocol for resource-rich sensor nodes [12].

4 TASK-ORIENTED AND IOT PROGRAMMING IN CLEAN

To make this paper self-contained we provide a concise overview of Clean, task-oriented programming (TOP),

and IoT programming in iTask and mTask. The minor innovations reported here are the interface to the IoT

sensors, and the Clean port for the Raspberry Pi.

Clean is a statically typed functional programming language similar to Haskell: both languages are pure and

non-strict [1].

A key diference is how state is handled: Haskell typically embeds stateful actions in the IO Monad [28, 55].

In contrast, Clean has a uniqueness type system to ensure the single-threaded use of stateful objects like

iles and windows [9, 61]. Both Clean and Haskell support fairly similar models of generic programming [62],

enabling functions to work on many types. As we shall see generic programming is heavily used in task-oriented

programming [3, 32], for example to construct web editors and communication protocols that work for any

user-deined datatype.
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Fig. 2. iTask SimpleTempSensor: web page (let) and deployment diagram (right).

4.1 Task-Oriented Programming

TOP is a declarative programming paradigm for constructing interactive distributed systems [59]. Tasks are the

basic blocks of TOP and represent work that needs to be done in the broadest sense. Examples of typical tasks

range from allowing a user to complete a form, controlling peripherals, moderating other tasks, or monitoring a

database. From a single declarative description of tasks all of the required software components are generated.

This may include web servers, client code for browsers or IoT devices, and for their interoperation.

That is, from a single TOP program the language implementation automatically generates an integrated

distributed system. Application areas range from simple web forms or blinking LEDs to multi-user distributed

collaboration between people and machines [54].

TOP adds three concepts: tasks, task combinators, and Shared Data Stores (SDSs). Example basic tasks are web

editors for user-deined datatypes, reading some IoT sensor, or controlling peripherals like a servo motor. Task

combinators compose tasks into more advanced tasks, either in parallel or sequential and allow task values to

be observed by other tasks. As tasks can be returned as the result of a function, recursion can be freely used,

e.g. to express the repetition of tasks. There are also standard combinators for common patterns. Tasks can

exchange information via SDSs [17]. All tasks involved can atomically observe and change the value of a typed

SDS, allowing more lexible communication than with task combinators. SDSs ofer a general abstraction of data

shared by diferent tasks, analogous to variables, persistent values, iles, databases and peripherals like sensors.

Combinators compose SDSs into a larger SDS, and parametric lenses deine a speciic view on an SDS.

4.2 The iTask embedded DSL

The iTask embedded DSL is designed for constructing multi-user distributed applications, including web [58] or

IoT applications. Here we present iTask by example, and the irst is a complete program to repeatedly read the

room temperature from a digital humidity and temperature (DHT) sensor attached to the machine and display it

on a web page (Listing 1). The irst line is the module name, the third imports the iTask module, and the main

function (lines 5 and 6) launches readTempTask and the iTask system to generate the web interface in Figure 2.

Interaction with a device like the DHT sensor using a protocol like 1-Wire or I2C is abstracted into a library.

So the readTempTask task starts by creating a dht sensor object (line 10) thereafter repeatEvery executes a task at

the speciied interval. This task reads the temperature from the dht sensor, and with a sequential composition

combinator >>∼ passes the temp value to viewInformation that displays it on the web page (line 13). The tuning

combinator <<@ adds a label to the web editor displaying the temperature. Crucially, the iTask implementation

transparently ships parts of the code for the web-interface to be executed in the browser, and Figure 2 shows the

UML deployment diagram.

SimpleTempSensor only reports instantaneous temperature measurements. Extending it to store andmanipulate

timed temperature records produces a tiny tierless web application: TempHistory in Listing 2. A tierless IoT

system can be controlled from a web interface in exactly the same way, e.g. to view and set the measurement

frequencies of each of the room sensors. Line 5 deines a record to store time and temp measurements. Task
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1 module simpleTempSensor

2

3 import iTasks

4

5 Start :: *World � *World

6 Start world = doTasks readTempTask world

7

8 readTempTask :: Task Real

9 readTempTask =

10 withDHT IIO_TempID λdht �

11 repeatEvery interval (

12 temperature dht >>∼ λtemp �

13 viewInformation [] temp <<@

14 Label "Temperature"

15 )

Listing 1. SimpleTempSensor: a Clean with iTask program to read a local room temperature sensor and display it on a web
page

manipulations are derived for Measurement (line 6) and these include displaying measurements in a web-editor and

storing them in a ile. Line 8 deines a persistent SDS to store a list of measurements, and for communication

between tasks. The SDS is analogous to the SQL DBMS in many tiered web applications.

TempHistory deines two tasks that interact with the measurementsSDS: measureTask adds measurements at each

detected change in the temperature. It starts by deining a dht object as before, and then deines a recursive task

function parameterized by the old temperature. This function reads the temperature from the DHT sensor and

uses the step combinator, >>*, to compose it with a list of actions. The irst of those actions that is applicable

determines the continuation of this task. If no action is applicable, the task on the left-hand side is evaluated

again. The irst action checks whether the new temperature is diferent from the old temperature (line 16). If so,

it records the current time and adds the new measurements to the measurementsSDS. The next action in line 19 is

always applicable and waits (sleeps) for an interval before returning the old temperature.

On line 21 task is launched with an initial temperature.

The controlSDS task illustrates communication from the web page user and persistent data manipulation. That

is, it generates a web page that allows users to control their view of the temperature measurements, as illustrated

in Figure 3. The page contains (1) a web editor to enter the number n of elements to display, generated on line 25.

(2) A display of the n most recent temperature and time measurements, lines 26 to 28. (3) Three buttons that

are again combined with the step combinator >>*, lines 28 to 33. The Clear button is always enabled and sets

the SDS to an empty list before calling controlSDS recursively. The Take button is only enabled when the web

editor produces a positive n and updates the measurementsSDS with the n most recent measurements before calling

controlSDS recursively. The inal action is always enabled and calls controlSDS recursively with the negation of the

byTemp argument to change the sorting criteria.

Figure 3 shows two screenshots of web pages generated by the TempHistory program. Figure 4 is the deploy-

ment diagram showing the addition of the persistent measurementsSDS that stores the history of temperature

measurements.

4.3 Engineering Tierless IoT Systems with iTask

A typical IoT system goes beyond a web application by incorporating a distributed set of sensor nodes each with

a collection of sensors or actuators. That is, they add the perception and network layers in Figure 1. If the sensor
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1 module TempHistory

2

3 import iTasks, iTasks.Extensions.DateTime

4

5 :: Measurement = {time :: Time, temp :: Real}

6 derive class iTask Measurement

7

8 measurementsSDS :: SimpleSDSLens [Measurement]

9 measurementsSDS = sharedStore "measurements" []

10

11 measureTask :: Task ()

12 measureTask =

13 withDHT IIO_TempID λdht �

14 let task old =

15 temperature dht >>*

16 [ OnValue (ifValue ((,) old) λtemp �

17 get currentTime >>∼ λtime �

18 upd (λlist � [{time = time, temp = temp}: list]) measurementsSDS @! temp)

19 , OnValue (always (waitForTimer False interval @! old))

20 ] >>∼ task

21 in task initialTemp

22

23 controlSDS :: Bool � Task [Measurement]

24 controlSDS byTemp =

25 ((Label "# to take" @>> enterInformation []) -||

26 (Label "Measurements" @>>

27 viewSharedInformation [ViewAs (if byTemp (sortBy (λx y � x.temp < y.temp)) id)]

28 measurementsSDS)) >>*

29 [OnAction (Action "Clear") (always (set [] measurementsSDS >-| controlSDS byTemp))

30 ,OnAction (Action "Take") (ifValue ((<) 0) (λn � upd (take n) measurementsSDS >-|

31 controlSDS byTemp))

32 ,OnAction (Action (if byTemp "Sort time" "Sort temp")) (always (controlSDS (not byTemp)))

33 ]

34

35 mainTask :: Task [Measurement]

36 mainTask = controlSDS False -|| measureTask

Listing 2. TempHistory: a tierless Clean with iTask webapplication that records and manipulates timed temperatures

nodes have the computational resources to support an iTask server, as a Raspberry Pi does, then iTask can also

be used to implement these layers, and integrate them with the application and presentation layers tierlessly.

As an example of tierless IoT programming in Clean with iTask Listing 3 shows a complete temperature sensing

system with a server and a single sensor node (CRTS (Clean Raspberry Pi Temperature Sensor)), omitting only

the module name and imports. It is similar to the SimpleTempSensor and TempHistory programs above, for

example devTask repeatedly sleeps and records temperatures and times, and mainTask displays the temperatures on

the web page in Figure 5. There are some important diferences, however. The devTask (lines 8ś13) executes on

the sensor node and records the temperatures in a standard timestamped (lens on) an SDS: dateTimeStampedShare

latestTemp. The mainTask (line 16) executes on the server: it starts devTask as an asynchronous task on the speciied

sensor node (line 17) and then generates a web page to display the latest temperature and time (lines 18 to 20).
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Fig. 3. Web pages generated by the TempHistory Clean with iTask tierless web application: on the let sorted by time; on the

right sorted by temperature. The Take buton is only enabled when the topmost editor contains a positive number.

Fig. 4. Deployment diagram of the iTask TempHistory tierless web application from Listing 2.

The tempSDS is very similar to the measurementsSDS from the previous listings. The only diference is that we

store measurements as tuples instead of tailor-made records. The latestTemp is a lens on the tempSDS. A lens is a

new SDS that is automatically mapped to another SDS. Updating one of the SDSs that are coupled in this way

automatically updates the other. The function mapReadWrite is parameterized by the read and write functions, the

option to handle asynchronous update conlicts (here ?None) and the SDS to be transformed (here tempSDS). The

result of reading is the head of the list, if it exists. The type for writing latestTemp is a tuple with a new DateTime

and temperature as Real.

Fig. 5. Tierless iTask CRTS temperature sensing IoT system: web page (let) and deployment diagram (right).
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1 tempSDS :: SimpleSDSLens [(DateTime, Real)]

2 tempSDS = sharedStore "temperatures" []

3

4 latestTemp :: SDSLens () (? (DateTime, Real)) (DateTime, Real)

5 latestTemp = mapReadWrite (listToMaybe, λx xs � ?Just [x:xs]) ?None tempSDS

6

7 devTask :: Task DateTime

8 devTask =

9 withDHT IIO_TempID λdht �

10 forever (

11 temperature dht >>∼ λtemp �

12 set temp (dateTimeStampedShare latestTemp) >-|

13 waitForTimer False interval)

14

15 mainTask :: Task ()

16 mainTask

17 = asyncTask deviceInfo.domain deviceInfo.port devTask

18 -|| viewSharedInformation []

19 (remoteShare latestTemp deviceInfo)

20 <<@ Title "Latest temperature"

Listing 3. CRTS: a tierless temperature sensing IoT system. Writen in Clean with iTask, it targets a resource-rich sensor
node.

4.4 The mTask embedded DSL

In many IoT systems the sensor nodes are resource constrained, e.g. inexpensive microcontrollers. These are far

cheaper, and consume far less power, than a single-board computer like a Raspberry Pi. Microcontrollers also

allow the programmer to easily control peripherals like sensors and actuators via the IO pins of the processor.

Microcontrollers have limited memory capacity, compute power and communication bandwidth, and hence

typically no OS. These limitations make it impossible to run an iTask server: there is no OS to start the remote

task, the code of the task is too big to it in the available memory and the microcontroller processor is too slow to

run it. The mTask embedded DSL is designed to bridge this gap: mTasks can be communicated from the server to

the sensor node, to execute within the limitations of a typical microcontroller, while providing programming

abstractions that are consistent with iTask.

Like iTask, mTask is task oriented, e.g. there are primitive tasks that produce intermediate values, a restricted

set of task combinators to compose the tasks, and (recursive) functions to construct tasks. mTasks communicate

using task values or SDSs that may be local or remote, and may be shared by some iTask tasks.

Apart from the embedded DSL, the mTask system contains a featherlight domain-speciic operating system

running on the microcontroller. This OS task scheduler receives the bytecode generated from one or more mTask

programs and interleaves the execution of those tasks. The OS also manages SDS updates and the passing of task

results. The mTask OS is stored in lash memory while the tasks are stored in RAM to minimise wear on the lash

memory. While sending bytecode to a sensor node at runtime greatly increases the amount of communication,

this can be mitigated as any tasks known at compile time can be preloaded on the microcontroller. In contrast,

compiled programs, like C/C++, are stored in lash memory and there can only ever be a few thousand programs

uploaded during the lifetime of the microcontroller before exhausting the lash memory.
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4.5 Engineering Tierless IoT Systems with mTask

A tierless Clean IoT system with microcontroller sensor nodes integrates a set of iTask tasks that specify the

application and presentation layers with a set of mTasks that specify the perception and network layers. We

illustrate with CWTS (Clean Wemos Temperature Sensor): a simple room temperature sensor with a web display.

CWTS is equivalent to the iTask CRTS (Listing 3), except that the sensor node is a Wemos microcontroller.

Listing 4 shows the complete program, and the key function is devTask with a top-level Main type (line 19). In

mTask functions, shares, and devices can only be deined at this top level. The program uses the same shares

tempSDS and latestTemp as CRTS, and for completeness we repeat those deinitions.

The body of devTask is the mTask slice of the program (lines 21ś26). With DHT we again create a temperature

sensor object dht. The iTask SDS latestTemp is irst transformed to a SDS that accepts only temperature values,

the dateTimeStampedShare adds the data via a lens. The mapRead adjusts the read type. This new SDS of type Real is

lifted to the mTask program with liftsds.

The mainTask is a simple iTask task that starts the devTask mTask task on the device identiied by deviceInfo

(line 30). At runtime the mTask slice is compiled to bytecode, shipped to the indicated device, and launched.

Thereafter, mainTask reads temperature values from the latestTemp SDS that is shared with the mTask device,

and displays them on a web page (Figure 5). The SDSÐshared with the device using liftsdsÐautomatically

communicates new temperature values from the microcontroller to the server.

While this simple application makes limited use of the mTask embedded DSL, it illustrates some powerful

mTask program abstractions like basic tasks, task combinators, named recursive and parameterized tasks, and

SDSs. Function composition (line 23) and currying (line 26) are inherited from the Clean host language. As

mTask tasks are dynamically compiled, it is also possible to select and customise tasks as required at runtime. For

example, the interval used in the rpeatevery task (line 24) could be a parameter to the devTask function.

Fig. 6. Tierless iTask/mTask CWTS temperature sensing IoT system: web page (let) and deployment diagram (right).

5 UOG SMART CAMPUS CASE STUDY

The basis for our comparison between tiered and tierless technologies are four IoT systems that all conform to

the UoG Smart Campus speciications (Section 5.3). There is a small (12 room) deployment of the conventional

Python-based PRSS stack that uses Raspberry Pi supersensors, and its direct comparator is the tierless CRSS

implementation: also deployed on Raspberry Pis.

To represent the more common microcontroller sensor nodes we select ESP8266X powered Wemos D1 Mini

microcontrollers. To evaluate tierless technologies on microcontrollers we compare the conventional Python/Mi-

croPython PWS stack with the tierless CWS implementation.

A similar range of commodity sensors is connected to both the Raspberry Pi and Wemos sensor nodes using

various low-level communication protocols such as general purpose input/output pins (GPIO), I2C, SPI and

one-wire. The sensors are as follows: Temperature & Humidity: LOLIN SHT30; Light: LOLIN BH1750; Motion:

LOLIN PIR; Sound: SparkFun SEN-12642; CO2: SparkFun CCS811.
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1 module cwts

2

3 import mTask.Language, mTask.Interpret, mTask.Interpret.Device.TCP

4

5 import iTasks, iTasks.Extensions.DateTime

6

7 deviceInfo = {TCPSettings | host = "...", port = 8123, pingTimeout = ?None} / / CO

8 interval = lit 10 / / SN

9 DHT_pin = DigitalPin D4 / / SI

10

11 Start world = doTasks mainTask world / / WI

12

13 tempSDS :: SimpleSDSLens [(DateTime, Real)]

14 tempSDS = sharedStore "temperatures" [] / / DI

15

16 latestTemp :: SDSLens () (? (DateTime, Real)) (DateTime, Real)

17 latestTemp = mapReadWrite (listToMaybe, λx xs � ?Just [x:xs]) ?None tempSDS / / DI

18

19 devTask :: Main (MTask v Real) | mtask, dht, liftsds v

20 devTask =

21 DHT (DHT_DHT DHT_pin DHT11) λdht � / / SI

22 liftsds λlocalSds = / / CO

23 mapRead (snd o fromJust) (dateTimeStampedShare latestTemp) / / SN

24 In {main = rpeatEvery (ExactSec interval) / / SN

25 (temperature dht >>∼. / / SI

26 setSds localSds)} / / SN

27

28 mainTask :: Task Real

29 mainTask

30 = withDevice deviceInfo λdev � liftmTask devTask dev / / CO

31 -|| viewSharedInformation [] latestTemp / / WI

32 <<@ Title "Latest temperature" / / WI

Listing 4. CWTS: a tierless temperature sensing IoT system. Writen in Clean iTask/mTask, it targets a resource-constrained
sensor node. Each line is annotated with the functionality as analysed in Section 6.1.

Figure 7 shows both a prototype Wemos-based sensor node and sensors and a Raspberry Pi supersensor. Three

diferent development teams developed the four implementations: CWS and CRS were engineered by a single

developer.

5.1 Tiered Implementations

The tiered PRS and PWS share the same server code executing on a commodity PC (Figure 1). The Python server

stores incoming sensor data in two database systems, i.e. Redis (in-memory data) and MongoDB (persistent

data). The real-time sensor data is made available via a streaming websockets server, which connects with Redis.

There is also an HTTP REST API for polling current and historical sensor data, which hooks into MongoDB.

Communication between a sensor node and the server is always initiated by the node.

PRS’s sensor nodes are relatively powerful Raspberry Pi 3 Model Bs. There is a simple object-oriented Python

collector for coniguring the sensors and reading their values. The collector daemon service marshals the sensor
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Fig. 7. Exposed views of sensor nodes: the Wemos on the let is used in PWS and CWS; the Raspberry Pi on the right is used

in PRS and CRS.

data and transmits using MQTT to the central monitoring server at a preset frequency. The collector caches

sensor data locally when the server is unreachable.

In contrast to PRS, PWS’s sensor nodes are microcontrollers running MicroPython, a dialect of Python

speciically designed to run on small, low powered embedded devices [37]. To enable a fair comparison between

the software stacks we are careful to use the same object-oriented software architecture, e.g. using the same

classes in PWS and PRS.

Python and MicroPython are appropriate tiered comparison languages. Tiered IoT systems are implemented

in a whole range of programming languages, with Python, MicroPython, C and C++ being popular for some

tiers in many implementations. C/C++ implementations would probably result in more verbose programs and

even less type safety. The other reasons for selecting Python and MicroPython are pragmatic. PRS had been

constructed in Python, deployed, and was being used as an IoT experimental platform. Selecting MicroPython for

the resource-constrained PWS sensor nodes facilitates comparison by minimising changes to the resource-rich

and resource-constrained codebases.

We anticipate that the codebase for a tiered smart campus implementation in another imperative/object-oriented

language, like C++, would be broadly similar to the PRS and PWS codebases.

5.2 Tierless Implementations

The tierless CRS and CWS servers share the same iTask server code (Figure 1), and can be compiled for many

standard platforms. They use

SQLite as a database backend. Communication between a sensor node and the server is initiated by the server.

CRS’s sensor nodes are Raspberry Pi 4s, and execute Clean iTask programs.

Communication from the sensor node to the server is implicit and happens via SDSs over TCP using platform

independent execution graph serialisation [54].

CWS’s sensor nodes are Wemos microcontrollers running mTasks. Communication and serialisation is, by

design, very similar to iTask, i.e. via SDSs over either a serial port connection, raw TCP, or MQTT over TCP.
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Fig. 8. Web interfaces for CWS and CRS (let); PWS and PRS (right).

5.3 Operational Equivalence

To ensure that the comparison reported in the following sections is based on IoT stacks with equivalent function-

ality, we demonstrate that PWS, CWS and CRS, like PRS, meet the functional requirements for the UoG smart

campus sensor system. We also compare the sensor node power consumption and memory footprint.

5.3.1 Functional Requirements. The main goal of the University of Glasgow (UoG) smart campus project is to

provide a testbed for sensor nodes and potentially other devices to act as a data collection and computation

platform for the UoG smart campus. The high-level functional requirements, as speciied by the UoG smart

campus project board, are as follows. The system should:

(1) be able to measure temperature and humidity as well as light intensity,

(2) scale to no more than 10 sensors per sensor node and investigate further sensor options like measuring

sound levels,

(3) have access to communication channels like WiFi, Bluetooth and even wired networks.

(4) have a centralised database server,

(5) have a client interface to access information stored in the database,

(6) provide some means of security and authentication,

(7) have some means of managing and monitoring sensor nodes like updating software or detecting new sensor

nodes.

All four smart campus implementations meet these high-level requirements.

5.3.2 Functional Equivalence. Observation of the four implementations shows that they operate as expected, e.g.

detecting light or motion. To illustrate Figure 8 shows the web interface for the implementations where CWS and

CRS are deployed in a diferent room from PWS and PRS.

All four implementations use an identical set of inexpensive sensors, so we expect the accuracy of the data

collected is within tolerance levels. This is validated by comparing PRS and PWS sensor nodes deployed in the

same room for some minutes. The measurements show only small variances, e.g. temperatures recorded difer by

less than 0.4◦C , and light by less than 1 lux. For this room monitoring application precise timings are not critical,

and we don’t compare the timing behaviours of the implementations.

5.3.3 Memory and Power Consumption.

Memory. By design sensor nodes are devices with limited computational capacity, and memory is a key

restriction. Even supersensors often have less than a GiB of memory, and microcontrollers often have just tens of

KiBs.

ACM Trans. Internet Things



111:18 • Mart Lubbers, Pieter Koopman, Adrian Ramsingh, Jeremy Singer, and Phil Trinder

As the tierless languages synthesize the code to be executed on the sensor nodes, we need to conirm that the

generated code is suiciently memory eicient.

PWS PRS CWS CRS

20,270 3,557,806 880 2,726,680

Table 1. UoG smart campus sensor nodes: maximum memory residency (bytes).

Table 1 shows the maximum memory residency after garbage collection of the sensor node for all four smart

campus implementations. The smart campus sensor node programs executing on the Wemos microcontrollers

have low maximum residencies: 20270 bytes for PWS and 880 bytes for CWS. In CWS the mTask system generates

very high level TOP bytecode that is interpreted by the mTask virtual machine and uses a small and predictable

amount of heap memory. In PWS, the hand-written MicroPython is compiled to bytecode for execution on the

virtual machine. Low residency is achieved with a ixed size heap and eicient memory management. For example

both MicroPython and mTask use ixed size allocation units and mark&sweep garbage collection to minimise

memory usage at the cost of some execution time [57].

The smart campus sensor node programs executing on the Raspberry Pis have far higher maximum residencies

than those executing on the microcontrollers: 3.5MiB for PRS and 2.7MiB for CRS. In CRS the sensor node code is

a set of iTask executing on a full-ledged iTask server running in distributed child mode and this consumes far

more memory.

In PRS the sensor node program is written in Python, a language far less focused on minimising memory usage

than MicroPython. For example an object like a string is larger in Python than in MicroPython and consequently

does not support all features such as f-strings. Furthermore, not all advanced Python feature regarding classes are

available in MicroPython, i.e. only a subset of the Python speciication is supported [81].

In summary the sensor node code generated by both tierless languages, iTask and mTask, is suiciently memory

eicient for the target sensor node hardware. Indeed, the maximum residencies of the Clean sensor node code

is less than the corresponding hand-written (Micro)Python code. Of course in a tiered stack the hand-written

code can be more easily optimised to minimise residency, and this could even entail using a memory eicienthat

thet language like C/C++. However, such optimisation requires additional developer efort, and a new language

would introduce additional semantic friction.

Power. Sensor nodes and sensors are designed to have low power demands, and this is particularly important

if they are operating on batteries. The grey literature consensus is that with all sensors enabled a sensor node

should typically have sub-1W peak power draw.

The Wemos sensor nodes used in CWS and PWS have the low power consumption of a typical embedded

device: with all sensors enabled, they consume around 0.2W. The Raspberry Pi supersensor node used in CRS

and PRS use more power as they have a general purpose ARM processor and run mainstream Linux. With all

sensors enabled, they consume 1ś2W, depending on ambient load. So a microcontroller sensor node consumes an

order of magnitude less power than a supersensor node.

6 IS TIERLESS IOT PROGRAMMING EASIER THAN TIERED?

This section investigates whether tierless languages make IoT programming easier by comparing the UoG

smart campus implementations. The CRS and CWS implementations allow us to evaluate tierless languages for

resource-rich and for resource-constrained sensor nodes respectively. The PRS and PWS allow a like-for-like

comparison with tiered Python implementations.
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6.1 Comparing Tiered and Tierless Codebases

Code Size. is widely recognised as an approximate measure of the development and maintenance efort required

for a software system [63]. SLOC is a common code size metric, and is especially useful for multi-paradigm

systems like IoT systems. It is based on the simple principle that the more lines of code, the more developer efort

and the increased likelihood of bugs [63]. It is a simple measure, not dependent on some formula, and can be

automatically computed [68].

Of course SLOC must be used carefully as it is easily inluenced by programming style, language paradigm,

and counting method [4]. Here we are counting code to compare development efort, use the same idiomatic

programming style in each component, and only count lines of code, omitting comments and blank lines.

Table 2 enumerates the SLOC required to implement the UoG smart campus functionalities in PWS, PRS, CWS

and CRS. Both Python and Clean implementations use the same server and communication code for Raspberry

Pi and for Wemos sensor nodes (rows 5ś7 of the table). The Sensor Interface (SI) refers to code facilitating the

communication between the peripherals and the sensor node software. Sensor Node (SN) code contains all other

code on the sensor node that does not belong to any another category, such as control low. Manage Nodes (MN)

is code that coordinates sensor nodes, e.g. to add a new sensor node to the system. Web Interface (WI) code

provides the web interface from the server, i.e. the presentation layer. Database Interface (DI) code communicates

between the server and the database(s). Communication (CO) code provides communication between the server

and the sensor nodes, and executes on both sensor node and server, i.e. the network layer.

The most striking information in Table 2 is that the tierless implementations require far less code than the

tiered implementations. For example 166/562 SLOC for CWS/PWS, or 70% fewer source lines. We attribute the

code reduction to three factors: reduced interoperation, automatic communication, and high level programming

abstractions. We analyse each of these aspects in the following subsections.

Tiered Python Tierless Clean

Code Location Functionality PWS PRS CWS CRS

Sensor Node Sensor Interface 52 57 11 11

Sensor Node 178 183 9 4

Server Manage Nodes 76 35 30

Web Interface 56 28

Database Interface 106 78

Communication Communication 94 98 5 4

Total SLOC 562 576 166 155

No. Files 35 38 3 3

Table 2. Comparing tiered and tierless smart campus code sizes: SLOC and number of source files. PWS and CWS execute

on resource-constrained sensor nodes, while PRS and CRS execute on resource-rich sensor nodes.

Code Proportions. Comparing the percentages of code required to implement the smart campus functionalities

normalises the data and avoids some issues when comparing SLOC for diferent programming languages, and

especially for languages with diferent paradigms like object-oriented Python and functional Clean. Figure 9

shows the percentage of the total SLOC required to implement the smart campus functionalities in each of the

four implementations, and is computed from the data in Table 2. It shows that there are signiicant diferences

between the percentage of code for each functionality between the tiered and tierless implementations. For
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example 17% of the tiered implementations speciies communication, whereas this requires only 3% of the tierless

implementations, i.e. 6× less. We explore the reasons for this in Section 6.4. The other major diference is the

massive percentage of Database Interface code in the tierless implementations: at least 47%. The Smart Campus

speciication required a standard DBMS, and the Clean/iTask SQL interface occupies some 78 SLOC. While this

is a little less than the 106 SLOC used in Python (Table 2), it is a far higher percentage of systems with total

codebases of only around 160 SLOC. Idiomatic Clean/iTask would use high level abstractions to store persistent

data in an SDS, requiring just a few SLOC. The total size of CWS and CRS would be reduced by a factor of two

and the percentage of Database Interface code would be even less than in the tiered Python implementations.
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Fig. 9. Comparing the percentage of code required to implement each functionality in tiered/tierless and resource-

rich/constrained smart campus implementations.

6.2 Comparing Codebases for Resource-Rich/Constrained Sensor Nodes

Before exploring the reasons for the smaller tierless codebase we compare the implementations for resource-rich

and resource-constrained sensor nodes, again using SLOC and code proportions. Table 2 shows that the two

tiered implementations are very similar in size: with PWS for microcontrollers requiring 562 SLOC and PRS for

supersensors requiring 576 SLOC. The two tierless implementations are also similar in size: CWS requiring 166

and CRS 155 SLOC.

There are several main reasons for the similarity. One is that the server-side code, i.e. for the presentation and

application layers, is identical for both resource rich/constrained implementations. The identical server code

accounts for approximately 40% of the PWS and PRS codebases, and approximately 85% of the CWS and CRS

codebases (Figure 9). For the perception and network layers on the sensor nodes, the Python and MicroPython

implementations have the same structure, e.g. a class for each type of sensor, and use analogous libraries. Indeed,
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approaches like CircuitPython [78] allow the same code to execute on both resource-rich and resource-constrained

sensor nodes.

Like Python and MicroPython, iTask and mTask are designed to be similar, as elaborated in Section 8. The

similarity is apparent when comparing the iTask CRTS and iTask/mTask CWTS room temperature systems in

Listings 3 and 4. That is, both implementations use similar SDS data stores and lenses; they have similar devTasks

that execute on the sensor node, and the server-side mainTasks are almost identical: they deploy the remote devTask

before generating the web page to report the readings.

In both Python and Clean the resource-constrained implementations are less than 7% larger than the resource-

rich implementations. This suggests that the development and maintenance efort of simple IoT systems for resource-

constrained and for resource-rich sensor nodes is similar in tierless technologies, just as it is in tiered technologies.

A caveat is that the smart campus system is relatively simple, and developing more complex perception and

network code on bare metal may prove more challenging. That is, the lack of OS support, and the restricted

languages and libraries, may have greater impact. We return to this issue in Section 8.

6.3 Reduced Interoperation

Languages Paradigms

Code Location Functionality PWS PRS CWS CRS Python Clean

Sensor Node Sensor Int. µPython Python mTask iTask imp. decl.

Sensor Node µPython Python mTask iTask imp. decl.

Server Manage Nodes Python, JSON iTask imp. decl.

Web Int. HTML, PHP iTask both decl.

Database Int. Python,JSON,Redis iTask both decl.

Communication Communication µPython Python iTask,mTask iTask imp. decl.

Total 7 6 2 1 2 1

Table 3. Smart Campus implementation languages and paradigm comparison.

The vast majority of IoT systems are implemented using a number of diferent programming languages

and paradigms, and these must be efectively used and interoperated. A major reason that the tierless IoT

implementations are simpler and shorter than the tiered implementations is that they use far fewer programming

languages and paradigms. Here we use language to distinguish embedded DSLs from their host language: so

iTask and mTask are considered distinct from Clean; and to distinguish dialects: so MicroPython is considered

distinct from Python.

The tierless implementations use just two conceptually-similar DSLs embedded in the same host language,

and a single paradigm (Table 3). In contrast, the tiers in PRS and PWS use six or more very diferent languages,

and both imperative and declarative paradigms. Multiple languages are commonly used in other typical software

systems like web stacks, e.g. a recent survey of open source projects reveals that on average at least ive diferent

languages are used [48]. Interoperating components in multiple languages and paradigms raises a plethora of

issues.

Interoperation increases the cognitive load on the developer whomust simultaneously think in multiple languages

and paradigms. This is commonly known as semantic friction or impedance mismatch [34]. A simple illustration

of this is that the tiered PRS source code comprises some 38 source and coniguration iles, whereas the tierless
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CRS requires just 3 iles (Table 2). The source could be structured as a single ile, but to separate concerns is

structured into three modules, one each for SDSs, types, and control logic [75].

The developer must correctly interoperate the components, e.g. adhere to the API or communication protocols

between components. The interoperation often entails additional programming tasks like marshalling or de-

marshalling data between components. For example, in the tiered PRS and PWS architectures, JSON is used to

serialise and deserialise data strings from the Python collector component before storing the data in the Redis

database (Listing 5).

channel = 'sensor_status. sensor_types.sensor_type_name(s.sensor_type))

self.r.publish(channel, s.SerializeToString())

..................................................................................................................

for message in p.listen():

if message['type'] not in ['message', 'pmessage']:

continue

try:

status = collector_pb2.SensorStatus.FromString(message['data'])

Listing 5. JSON Data marshalling in PRS and PWS: sensor node above, server below.

To ensure correctness the developer must maintain type safety across a range of very diferent languages and

diverse type systems, and we explore this further in Section 7.1. The developer must also deal with the potentially

diverse failure modes, not only of each component, but also of their interoperation, e.g. if a value of an unexpected

type is passed through an API. We explore this further in Section 7.2.

6.4 Automatic Communication

In conventional tiered IoT implementations the developer must write and maintain code to communicate between

tiers. For example PRS and PWS create, send and readMQTT [42]messages between the perception and application

layers. Table 2 shows that communication between these layers require some 94 SLOC in PWS and 98 in PRS,

accounting for 17% of the codebase (bottom bars in Figure 9). To illustrate, Listing 6 shows part of the code to

communicate sensor readings from the PWS sensor node to the Redis store on the server.

Not only must the tiered developer write additional code, but IoT communication code is often intricate. In

such a distributed system the sender and receiver must be correctly conigured, correctly follow the commu-

nication protocol through all execution states, and deal with potential failures. For example line 3 of Listing 6:

redis host = config.get('Redis', 'Host') will fail if either the host or IP are incorrect.

def main():

config.init('mqtt')

redis_host = config.get('Redis', 'Host')

redis_port = config.getint('Redis', 'Port')

r = redis.StrictRedis(host=redis_host, port=redis_port)

p = r.pubsub()

p.psubscribe("sensor_status.*")

for message in p.listen():

if message['type'] not in ['message', 'pmessage']:

print "Ignoring message . . .

Listing 6. Tiered Communication Example: MQTT transmission of sensor values in PWS.
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In contrast, the tierless CWS and CRS communication is not only highly automated, but also automatically

correct becausematching sender and receiver code is generated by the compiler. Table 2 shows that communication

is speciied in just 5 SLOC in CWS and 4 in CRS, or just 3% of the codebase (bottom bars in Figure 9).

Listing 4 illustrates communication in a tierless IoT language. That is, the CWTS temperature sensor requires

just three lines of communication code, and uses just three communication functions. The withDevice function on

line 30 integrates a sensor node with the server, allowing tasks to be sent to it. The liftmTask on line 30 integrates

an mTask in the iTask runtime by compiling it and sending it for interpretation to the sensor node. The liftsds

on line 22 integrates SDSs from iTask into mTask, allowing mTasks to interact with data from the iTask server.

The exchange of data, user interface, and communication are all automatically generated.

6.5 High Level Abstractions

Another reason that the tierless Clean implementations are concise is because they use powerful higher order

IoT programming abstractions. For comprehensibility the simple temperature sensor from Section 4.4 (Listing 4)

is used to compare the expressive power of Clean and Python-based IoT programming abstractions. There are

implementations for all four conigurations: PRTS (Python Raspberry Pi Temperature Sensor)1, PWTS (Python

Wemos Temperature Sensor)1 , CRTS2 and CWTS2 but as the programming abstractions are broadly similar, we

compare only the PWTS and CWTS implementations.

Although the temperature sensor applications are small compared to the smart campus application, they share

some typical IoT stack traits. The architecture consists of a server and a single sensor node (Figure 6). The sensor

node measures and reports the temperature every ten seconds to the server while the server displays the latest

temperature via a web interface to the user.

Table 4 compares the SLOC required for the MicroPython and Clean iTask/mTask Wemos temperature sensors:

PWTS and CWTS respectively. The code sizes here should not be used to compare the programming models as

implementing such a small application as a conventional IoT stack requires a signiicant amount of coniguration

and other machinery that would be reused in a larger application. Hence, the ratio between total PWTS and

CWTS code sizes (298:15) is far greater than for realistic applications like PWS and CWS (471:166).

Location Functionality PWTS CWTS Lines (Listing 4)

Sensor Node Sensor Interface 14 3 9, 21, 25

Sensor Node 67 4 8, 23, 24, 26

Server Web Interface 17 3 11, 31, 32

Database Interface 106 2 14, 17

Communication Communication 94 3 7, 22, 30

Total SLOC 298 15

No. Files 27 1

Table 4. Comparing Clean and Python programming abstractions using the PWTS and CWTS temperature sensors (SLOC

and total number of files.)

The multiple tiers in PRS and PWS provide diferent levels of abstraction and separation of concerns.

1Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line counts and memory stats for PRS, PWS, PRT and

PWT. Zenodo. 10.5281/zenodo.5081386.
2Lubbers, M.; Koopman, P.; Ramsingh, A.; Singer, J.; Trinder, P. (2021): Source code, line counts and memory stats for CRS, CWS, CRTS and

CWTS. Zenodo. 10.5281/zenodo.5040754.
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However, there are various ways that high-level abstractions make the CWS much shorter than PRS and PWS

implementations.

Firstly, functional programming languages are generally more concise than most other programming languages

because their powerful abstractions like higher-order and/or polymorphic functions require less code to describe

a computation. Secondly, the TOP paradigm used in iTask and mTask reduces the code size further by making it

easy to specify IoT functionality concisely. As examples, the step combinator >>*. allows the task value on the

left-hand side to be observed until one of the steps is enabled;

and the viewSharedInformation (line 31 of Listing 4) part of the UI will be automatically updated when the value

of the SDS changes. Moreover, each SDS provides automatic updates to all coupled SDSs and associated tasks.

Thirdly, the amount of explicit type information is minimised in comparison to other languages, as much is

automatically inferred [33].

7 COULD TIERLESS IOT PROGRAMMING BE MORE RELIABLE THAN TIERED?

This section investigates whether tierless languages make IoT programming more reliable. Arguably the much

smaller and simpler code base is inherently more understandable, and more likely to be correct. Here we explore

speciic language issues, namely those of preserving type safety, maintainability, failure management, and

community support.

7.1 Type Safety

Strong typing identiies errors early in the development cycle, and hence plays a crucial role in improving

software quality. In consequence almost all modern languages provide strong typing, and encourage static typing

to minimise runtime errors.

That said, many distributed system components written in languages that primarily use static typing, like

Haskell and Scala, use some dynamic typing, e.g. to ensure that the data arriving in a message has the anticipated

type [21, 25].

In a typical tiered multi-language IoT system the developer must integrate software in diferent languages

with very diferent type systems, and potentially executing on diferent hardware. The challenges of maintaining

type safety have long been recognised as a major component of the semantic friction in multi-language systems,

e.g. [34].

Even if the diferent languages used in two components are both strongly typed, they may attribute, often quite

subtly, diferent types to a value. Such type errors can lead to runtime errors, or the application silently reporting

erroneous data. Such errors can be hard to ind. Automatic detection of such errors is sometimes possible, but

requires an addition tool like Jinn [23, 39].

message SensorData {

enum SensorType { TEMPERATURE = 1; . . . }

SensorType sensor_type = 1;

uint64 timestamp = 2;

double float_value = 3;

}

..................................................................................................................

channel = 'sensor_status. sensor_types.sensor_type_name(s.sensor_type))

self.r.publish(channel, s.SerializeToString())

Listing 7. PRS loses type safety as a sensor node sends a double, and the server stores a string.

Analysis of the PRS codebase reveals an instance where it, fairly innocuously, loses type safety. The fragment

in Listing 7 irst shows a double sensor value being sent from the sensor node, and then shows the value being
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failover :: [TCPSettings] (Main (MTask BCInterpret a)) � Task a

failover [] _ = throw "Exhausted device pool"

failover [d:ds] mtask = try (withDevice d (liftmTask mtask)) except

where except MTEUnexpectedDisconnect = failover ds mtask

except _ = throw e

Listing 8. An mTask failover combinator.

stored in Redis as a string on the server. As PWS preserves the same server components it also sufers from the

same loss of type safety.

A tierless language makes it possible to guarantee type safety across an entire IoT stack. For example the Clean

compiler guarantees static type safety as the entire CWS software stack is type checked, and generated, from a

single source. Tierless web stack languages like Links [15] and Hop [66] provide the same guarantee for web

stacks.

7.2 Failure Management

Some IoT applications, including smart campus and other building monitoring applications, require high sensor

uptimes. Hence, if a sensor or sensor node fails the application layer must be notiied, so that it can report the

failure. In the UoG smart campus system a building manager is alerted to replace the failed device.

In many IoT architectures, including PRS and PWS, detecting failure is challenging because the application

layer listens to the devices. When a device comes online, it registered with the application and starts sending

data. When a device goes oline again, it could be because the power was out, the device was broken or the

device just paused the connection.

If a sensor node fails in CWS, the iTask/mTask combinator interacting with a sensor node will throw an iTask

exception. The exception is propagated and a handler can respond, e.g. rescheduling the task on a diferent device

in the room, or requesting that a manager replaces the device. That is, iTask, uses standard succinct declarative

exception handling.

In the UoG smart campus application, this can be done by creating a pool of sensor nodes for each room and

when a sensor node fails, assign another one to the task.

Listing 8 shows a failover combinator that executes an mTask on one of a pool of sensor nodes. If a sensor

node unexpectedly disconnects, the next sensor node is tried until there are no sensor nodes left. If other errors

occur they are propagated as usual.

Currently, PRS and PWS both use heartbeats to conirm that the sensor nodes are operational, and will report

failures. At the cost of extending the codebase, failover to an alternate sensor node could be provided.

7.3 Maintainability

Far more engineering efort is expended on maintaining a system, than on the initial development. Tiered and

tierless IoT systems have very diferent maintainability properties.

The modularity of the tiered stack makes replacing tiers/components easy. For example in PWS or PRS the

MongoDB NoSQL DBMS could be readily be replaced by an alternative like CouchDB. Because a tierless compiler

must generate code for components, replacing them may not be so easy. If there are iTask abstractions for the

component then replacement is straightforward. For example replacing SQLite with some other SQL DBMS

simply entails recompilation of the application.

However incorporating a component that does not yet have a task abstraction, like a NoSQL DBMS, is more

involved. That is, a foreign function interface to the new component must be implemented, along with a suitable

iTask abstraction for operations on the component.
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Many maintenance tasks are smaller in scale and occur within the components or tiers. Consider a simple

change, for example if the temperature value recorded by a sensor changes from integer to real.

All tiers of a tiered stack must be correctly and consistently refactored to relect the change of temperature

data type: so changes at the perception, network, application and presentation layers. A PWS developer works

in seven languages and two paradigms to efect the change (Table 2), and must edit many source iles. Many

programming errors are either detected at runtime when testing the stack, or worse not automatically detected

and produce erroneous results.

In a tierless language the source code is much smaller and so it is easier to comprehend, i.e. to understand

what refactoring is required. A CWS developer works in only two languages and a single paradigm to efect the

change, and will edit no more than three source iles (Table 2). Moreover, the compiler will statically detect many

programming errors.

More substantial in-component maintenance raises similar issues as for tiered implementations. If the mainte-

nance activity requires a new task combinator, this is readily constructed in iTask, but may require changing the

DSL implementation in mTask, i.e. to change the compiler and the bytecode interpreter. That is, mTask is more

brittle than iTask.

In summary, while a tiered approach makes replacing components easy, refactoring within the components is

far harder in a multi-tier multi-language IoT implementation than in a tierless IoT implementation.

7.4 Support

Community and tool support are essential for engineering reliable production software. PRS and PWS are both

Python based, and Python/MicroPython are among the most popular programming languages [13]. Python is

also a common choice for some tiers of IoT applications [77]. Hence, there are a wide range of development tools

like IDEs and debuggers, a thriving community and a wealth of training material. There are even specialised IoT

Boards like PyBoard & WiPy that are speciically programmed using Python variations like MicroPython.

In contrast, tierless languages are far less mature than the languages used in tiered stacks, and far less widely

adopted. This means that for CWS and CRS there are fewer tools, a far smaller developer community, and less

training material available.

CWS and CRS are both written in DSLs embedded in Clean, a fairly stable industrial-grade but niche functional

programming language. The DSLs are implemented in Clean but require experimental compiler extensions that

are often undocumented. There are few maintainers of the DSLs and documentation is often sparse. Acquiring

information about the systems requires distilling academic papers and referring to the source code. There is a

Clean IDE, but it does not contain support for the iTask or mTask DSLs.

8 COMPARING TIERLESS LANGUAGES FOR RESOURCE-RICH/CONSTRAINED SENSOR NODES

This section compares two tierless IoT languages: one for resource-rich, and the other for resource-constrained,

sensor nodes. Key issues are the extent to which the very signiicant resource constraints of a microcontroller

limit the language, and the beneits of executing on bare metal, i.e. without an OS.

With the tierless Clean technologies described here, iTask are always used to program the application and

presentation layers of the IoT stack. So any diferences occur in the perception and network layer programming.

If sensor nodes have the capacity to support iTask, a tierless IoT system can be constructed in Clean using only

iTask, as in CRS. Alternatively for sensor nodes with low computational power, like typical microcontrollers,

mTask is used for the perception and network layers, as in CWS.

This section compares the iTask and mTask embedded DSLs, with reference to CRS and CWS as exemplars.

Table 5 summarises the diferences between the Clean embedded IoT DSLs and their host language.
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Property Clean iTask mTask

Function for an IoT System Host Language Specify distributed

worklows

Specify sensor node

worklow

Referentially transparent Yes Yes Yes

Evaluation strategy Lazy Lazy Strict

Higher-order functions Yes Yes No

User-deined datatypes Yes Yes No

Task oriented No Yes Yes

Higher-order tasks ś Yes No

Execution Target Commodity PC Commodity PC and

Browser

Microcontroller

Language Implementation Compiled or inter-

preted

Compiled and inter-

preted

Interpreted

Table 5. Comparing tierless IoT languages for resource-rich sensor nodes (iTask embedded DSL), for resource-constrained

sensor nodes (mTask embedded DSL), and their Clean host language.

8.1 Language Restrictions for Resource-Constrained Execution

Executing components on a resource-constrained sensor node imposes restrictions on programming abstractions

available in a tierless IoT language or DSL. The small and ixed-size memory are key limitations. The limitations

are shared by any high-level language that targets microcontrollers such as BIT, PICBIT, PICOBIT, Microscheme

and uLisp [18, 22, 35, 71, 76]. Even in low level languages some language features are disabled by default when

targeting microcontrollers, such as runtime type information (RTTI) in C++.

Here we investigate the restrictions imposed by resource-constrained sensor nodes on mTask, in compari-

son with iTask. While iTask and mTask are by design supericially similar languages, to execute on resource-

constrained sensor nodes mTasks are more restricted, and have a diferent semantics.

mTask programs do not support user deined higher order functions, the only higher order functions available

are the predeined mTask combinators. Programmers can, however, use any construct of the Clean host language

to construct an mTask program, including higher order functions and arbitrary data types. For example folding

an mTask combinator over a list of tasks. The only restriction is that any higher order function must be macro

expanded to a irst order mTask program before being compiled to bytecode.

As an example in Listing 4we use temperature dht >>∼. setSds localSds instead of temperature dht >>∼. λ temp � setSds localSds temp.

In contrast to iTask, mTask programs have no user deined or recursive data types. It is possible to add user

deined typesÐas long as they are not sum typesÐto mTask, but this requires signiicant programming efort.

Due to the language being shallowly embedded, pattern matching and ield selection on user deined types is not

readily available and thus needs to be built into the language by hand. Alleviating this limitation remains future

work.

mTask programs mainly use strict rather than lazy evaluation to minimise the requirement for a variable

size heap. This has no signiicant impact for the mTask programs we have developed here, nor in other IoT

applications we have engineered.

mTask abstractions are less easily extended than iTask. For example iTask can be extended with a new

combinator that composes a speciic set of tasks for some application. Without higher order functions the

equivalent combinator can often not be expressed in mTask, and adding it to mTask requires extending the DSL
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rather than writing a new deinition in it. On the other hand, it is possible to outsource this logic to the iTask

program as mTask and iTask tasks are so tightly integrated.

8.2 The Benefits of a Bare Metal Execution Environment

Despite the language restrictions, components of a tierless language executing on a microcontroller can exploit

the bare metal environment. Many of these beneits are shared by other bare metal languages like MicroPython

or C/C++. So as mTask executes on bare metal it has some advantages over iTask. Most notably mTask has

better control of timing as on bare metal there are no other processes or threads that compete for CPU cycles.

This makes the mTask repeatEvery (Listing 4, line 24) much more accurate than the iTask waitForTimer (Listing 3,

line 13). While exact timing is not important in this example, it is signiicant for many other IoT applications.

In contrast iTask cannot give real time guarantees. One reason is that an iTask server can ship an arbitrary

number of iTask or mTask tasks to a device. Such competing tasks, or indeed other OS threads and processes,

consume processor time and reduce the accuracy of timings. However, even when using multiple mTasks, it is

easier to control the number of tasks on a device than controlling the number of processes and threads executing

under an OS.

An mTask program has more control over energy consumption. The mTask embedded DSL and the mTask

run-time system (RTS) are designed to minimise energy usage [16]. Intensional analysis of the declarative task

description and current progress at run time allow the RTS to schedule tasks and maximise idle time. As the RTS

is the only program running on the device, it can enforce deep sleep and wake up without having to worry about

inluencing other processes.

The mTask RTS has direct control of the peripherals attached to the microcontroller, e.g. over GPIO pins. There

is no interaction with, or permission required from, the OS. Moreover, microcontrollers typically have better

support for hardware interrupts, reducing the need to poll peripherals.

The downside of this direct control is that CWS has to handle some exceptions that would otherwise be handled

by the OS in CRS and hence the device management code is longer: 28 versus 20 SLOC in Table 2.

8.3 Summary

Table 5 summarises the diferences between the Clean IoT embedded DSLs and their host language. The restrictions

imposed by a resource-constrained execution environment on the tierless IoT language are relatively minor.

Moreover the mTask programming abstraction is broadly compatible with iTask. As a simple example compare

the iTask and mTask temperature sensors in Listings 3 and 4. As a more realistic example, the mTask based CWS

smart campus implementation is similar to the iTask based CRS, and requires less than 10% additional code: 166

SLOC compared with 155 SLOC (Table 2).

Even with these restrictions, mTask programming is at a far higher level of abstraction than almost all bare

metal languages, e.g. BIT, PICBIT, PICOBIT and Microscheme. That is mTask provides a set of higher order

task combinators, shared distributed data stores, etc. (Section 4.4). Moreover, it seems that common sensor node

programs are readily expressed using mTask. In addition to the CWTS and CWS systems outlined here, other case

studies include Arduino examples as well as some bigger tasks [38, 44, 45]. We conclude that the programming of

sensor tasks is well-supported by both DSLs.

9 CONCLUSION

9.1 Summary

We have conducted a systematic comparative evaluation of two tierless language technologies for IoT stacks:

one for resource-rich, and the other for resource-constrained sensor nodes. The basis is four implementations of

a deployed smart campus IoT stack: two conventional tiered and Python-based stacks, and two tierless Clean
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stacks. An operational comparison of implementations demonstrates that they have equivalent functionality, and

meet the UoG smart campus functional requirements (Section 5).

We show that tierless languages have the potential to signiicantly reduce the development efort for IoT systems.

Speciically the tierless CWS and CRS stacks require far less code, i.e. 70% fewer source lines, than the tiered PWS

and PRS stacks (Table 2). We analyse the code reduction and attribute it to the following three main factors. (1)

Tierless developers need to manage less interoperation: CRS uses a single DSL and paradigm, and CWS uses two

DSLs in a single paradigm and three source code iles. In contrast, both PRS and PWS use at least six languages

in two paradigms and spread over at least 35 source code iles (Tables 2 and 3). Thus, a tierless stack minimises

semantic friction. (2) Tierless developers beneit from automatically generated, and hence correct, communication

(Listing 4), and write 6× less communication code (Figure 9).

(3) Tierless developers can exploit powerful high-level declarative and task-oriented IoT programming abstrac-

tions (Table 4), speciically the composable, higher-order task combinators outlined in Section 4.2. Our empirical

results for IoT systems are consistent with the beneits claimed for tierless languages in other application domains.

Namely that a tierless language provides a Higher Abstraction Level, Improved Software Design, and improved

Program Comprehension [82].

We show that tierless languages have the potential to signiicantly improve the reliability of IoT systems. We

illustrate how Clean maintains type safety, contrasting this with a loss of type safety in PRS. We illustrate higher

order failure management in Clean iTask/mTask in contrast to the Python-based failure management in PRS. For

maintainability a tiered approach makes replacing components easy, but refactoring within the components is

far harder than in a tierless IoT language. Again our indings are consistent with the simplied Code Maintenance

beneits claimed for tierless languages [82].

Finally, we contrast community support for the technologies (Section 7).

We report the irst comparison of a tierless IoT codebase for resource-rich sensor nodes with one for resource-

constrained sensor nodes. (1) The tierless implementations have very similar code sizes (SLOC), as do the tiered

implementations: less than 7% diference in Table 2. This suggests that the development and maintenance efort

of simple tierless IoT systems for resource-constrained and for resource-rich sensor nodes is similar, as it is for

tiered technologies. (2) The percentages of code required to implement each IoT functionality in the tierless Clean

implementations is very similar as it is in the tiered Python implementations (Figure 9). This suggests that the

code for resource-constrained and resource-rich sensor nodes can be broadly similar in tierless technologies, as it

is in many tiered technologies (Section 6.2).

We present the irst comparison of two tierless IoT languages: one designed for resource-constrained sensor nodes

(Clean with iTask and mTask), and the other for resource-rich sensor nodes (Clean with iTask). Clean with iTask can

implement all layers of the IoT stack if the sensor nodes have the computational resources, as the Raspberry Pis

do in CRS. On resource constrained sensor nodes mTask are required to implement the perception and network

layers, as on the Wemos minis in CWS. We show that a bare metal execution environment allows mTask to

have better control of peripherals, timing and energy consumption. The memory available on a microcontroller

restricts the programming abstractions available in mTask to a ixed set of combinators, no user deined or

recursive data types, strict evaluation, and makes it harder to add new abstractions. Even with these restrictions

mTask provide a higher level of abstraction than most bare metal languages, and can readily express many IoT

applications including the CWS UoG smart campus application (Section 8). Our empirical results are consistent

with the beneits of tierless languages listed in Section 2.1 of [82].

9.2 Reflections

This study is based on a speciic pair of tierless IoT languages, and the Clean language frameworks represent a

speciic set of tierless language design decisions. Many alternative tierless IoT language designs are possible, and
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some are outlined in Section 3.3. Crucially the limitations of the tierless Clean languages, e.g. that they currently

provide limited security, should not be seen as limitations of tierless technologies in general.

This study has explored some, but not all, of the potential beneits of tierless languages for IoT systems. An IoT

system speciied as a single tierless program is amenable to a host of programming language technologies. For

example, if the language has a formal semantics, as Links, Hop and Clean tasks do [15, 59, 66], it is possible to

prove properties of the system, e.g. [72]. As another example program analyses can be applied, and Section 3.3

and [82] outline some of the analyses could be, and in some cases have been, used to improve IoT systems.

Examples include automatic tier splitting [56], and controlling information low to enhance security [80].

While ofering real beneits for IoT systems development, tierless languages also raise some challenges.

Programmers must master new tierless programming abstractions, and the semantics of these automatic multi-

tier behaviours are necessarily relatively complex. In the Clean context this entails becoming proicient with the

iTask and mTask DSLs. Moreover, specifying a behaviour that is not already provided by the tierless language

requires either a workaround, or extending a DSL. However, implementing the relatively simple smart campus

application required no such adaption. Finally, tierless IoT technology is very new, and both tool and community

support have yet to mature.

9.3 Future Work

This paper is a technology comparison between tiered and tierless technologies. The metrics reported, such as

code size, numbers of source code iles, and of paradigms are only indirect, although widely accepted, measures

of development efort. A more convincing evaluation of tierless technologies could be provided by conducting a

carefully designed and substantial user study, e.g. using N-version programming.

A study that implemented common benchmarks or a case study in multiple tierless IoT languages would provide

additional evidence for the generality of the tierless approach. Such a study would enable the demonstration and

comparison of alternative design decisions within tierless languages, as outlined in Section 3.3.

In ongoing work we are extending the mTask system in various ways. One extension allows mTasks to

communicate directly, rather than via the iTask server. Another provides better energy management, which is

crucial for battery powered sensor nodes.
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